AQUEOUS-CHEMICAL CONTROL OF THE TETRAHEDRAL-ALUMINUM CONTENT OF QUARTZ, HALLOYSITE, AND OTHER LOW-TEMPERATURE SILICATES

ENRIQUE MERINO, COLIN HARVEY,1 AND H. H. MURRAY

Department of Geology, Indiana University, Bloomington, Indiana 47405

Abstract—Aqueous Al passes from octahedral to tetrahedral coordination over a narrow pH interval, or threshold. This interval is 5.5–6.5 at 25°C and shifts to lower pH as temperature increases. The concentration of aqueous tetrahedrally coordinated Al is a quasi-step function of the solution pH, and, by the mass-action law, should be the amount of tetrahedral Al incorporated by a silicate that crystallizes from the aqueous solution. Qualitative support for this prediction (which applies to quartz, opal-CT, kaolin-group minerals, pyrophyllite, micas, chlorites, and other low-temperature silicates) comes from the very topology of equilibrium activity diagrams and from several pairs of associated waters and authigenic silicates from weathering, hydrothermal, and diageneric environments. The uptake of tetrahedral Al also depends on the aqueous concentrations of monovalent cations and silica, and on the mineral’s structural constraints. Solid solution of tetrahedral Al in halloysite in turn produces the characteristic bent or tubular crystals of this mineral. This genetic link between aqueous chemistry (mainly pH), tetrahedral-Al uptake by a low-temperature silicate, and the mineral’s crystal morphology may operate also in other silicates.

Key Words—Activity diagram, Al solid solution, Crystal morphology, Halloysite, Quartz, Step function, Water-silicate equilibria.

INTRODUCTION

Because of the mass-action law any mineral is forced to incorporate ions and species that are sufficiently concentrated in the aqueous solution from which it precipitates—although only to the degree allowed by its crystal structure. This general idea can explain why and under what conditions many silicates incorporate some tetrahedral Al in substitution for Si. Qualitatively, they do so if they crystallize from aqueous solutions having sufficiently high concentrations of tetrahedral Al. A similar suggestion was made in passing by de Jong et al. (1983).

The purpose of this contribution is to assess the consequences of aqueous-solution composition on the degree of uptake of tetrahedral Al by low-temperature silicates that crystallize from aqueous solution, and to test these predictions by comparing natural water compositions and associated authigenic silicates on activity diagrams. To simplify these comparisons we have taken aqueous-solubility activity coefficients to be similar to each other and thus to cancel out of mass-action law expressions; this assumption introduces at worst only second-order errors. Tetrahedrally coordinated and octahedrally coordinated Al are represented by Al

1 Present address: KRTA Ltd., P.O. Box 9806, Auckland, New Zealand.

The thermodynamic data used below are, except where otherwise specified, from May et al. (1979), Coutourier et al. (1984), and Bowers et al. (1984).

COORDINATION OF ALUMINUM IN AQUEOUS SOLUTIONS

At low pHs the dominant species of Al in aqueous solutions is [Al(H₂O)₆]³⁺, in which the Al ion is coordinated octahedrally by six water dipoles (Cotton and Wilkinson, 1962, pp. 335, 340; Hem and Robertson, 1967, p. A10). As the pH increases some of the dipoles lose a hydrogen ion, and the resulting hydroxyl ions are thus attracted more strongly by the inner Al ion. This attraction lowers its effective ionic radius, leaving less room for coordinating hydroxyl ions around the Al and reducing its coordination number from 6 to 4 (Cotton and Wilkinson, 1962, pp. 335, 342). The dominant aqueous complex now becomes Al(OH)₃⁺. Within the transition interval the dominant aqueous complexes are in sequence AlOH²⁺ and Al(OH)₃⁺, and we have assumed that the coordination of Al in them is still 6-fold. The complex Al(OH)₃⁻ appears to be negligible (May et al., 1979).

The pH-dependent equilibria between each of the octahedrally coordinated species [Al(H₂O)₆]³⁺, [Al(OH)(H₂O)₅]²⁺, and [Al(OH)₂(H₂O)₄]⁺ and the tetrahedrally coordinated species [Al(OH)₄]⁻ can be written as

\[
[\text{Al(H}_2\text{O)}₆]^{3+} + 4 \text{OH}^- = [\text{Al(OH)}₃]^+ + 6 \text{H}_2\text{O},
\]

\[
[\text{Al(OH)}(\text{H}_2\text{O})₅]^{2+} + 3 \text{OH}^- = [\text{Al(OH)}₂]⁺ + 5 \text{H}_2\text{O}, \tag{1}
\]

\[
[\text{Al(OH)}₂(\text{H}_2\text{O})₄]⁺ + 2 \text{OH}^- = [\text{Al(OH)}₃]⁻ + 4 \text{H}_2\text{O}
\]
Table 1. Equilibria and constants.

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>log K 25°C</th>
<th>log K 100°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(OH)₄⁻ + 2 OH⁻ = Al(OH)₂⁻</td>
<td>33.84¹</td>
<td>32.9²</td>
</tr>
<tr>
<td>Al(OH)₃⁺ + 3 OH⁻ = Al(OH)₄⁻</td>
<td>24.79³</td>
<td>23.8³</td>
</tr>
<tr>
<td>Al(OH)₆⁻ + 4 OH⁻ = Al(OH)₅⁻</td>
<td>15.99⁴</td>
<td>15⁴</td>
</tr>
<tr>
<td>H₂O = H⁺ + OH⁻</td>
<td>13.997¹</td>
<td>12.26⁴</td>
</tr>
</tbody>
</table>

¹ Values calculated from internally consistent data in May et al. (1979) and Coutourier et al. (1984).
² Values deduced by extrapolation of data in Coutourier et al. (1984).
³ Estimated.
⁴ Fisher and Barnes (1972).

Because the dissociation of the hydrated complexes on the left of these three equilibria to their respective non-hydrated complexes have equilibrium constants of unity at any temperature and pressure (obtained by appropriate choices of standard states, see Lewis et al., 1961, p. 272), reactions (1) can be replaced respectively by those in Table 1, which also gives the log K values used here. The reactions in Table 1 can thus be used to describe both the speciation of aqueous Al and the equilibrium between octahedral and tetrahedral aqueous Al.

Disregarding for simplicity activity coefficients and combining the mass balance for Al, which is

\[
m_{\text{Al, tot}} = m_{\text{Al}^{3+}} + m_{\text{Al}(OH)^{2-}} + m_{\text{Al}(OH)_2^{+}} + m_{\text{Al}(OH)_3^{2-}}
\]

with the equilibrium conditions for the reactions in Table 1,

\[
K_1 = m_{\text{Al}(OH)_2^{+}} \cdot a_{\text{H}^+}^2 / K_w \cdot m_{\text{Al}^{3+}}
\]

\[
K_2 = m_{\text{Al}(OH)_3^{2-}} \cdot a_{\text{H}^+}^3 / K_w \cdot m_{\text{Al}(OH)_2^{+}}
\]

\[
K_3 = m_{\text{Al}(OH)_4^{-}} \cdot a_{\text{H}^+}^4 / K_w \cdot m_{\text{Al}(OH)_3^{2-}}
\]

one obtains

\[
m_{\text{Al}^{3+}} / m_{\text{Al, tot}} = \left[1 + (a_{\text{H}^+}^2 / K_w)
+ (a_{\text{H}^+}^3 / K_w)
+ (a_{\text{H}^+}^4 / K_w) \right]^{-1}
\]

where a and m represent activity and molality of the subscripted species, and K₆ is the dissociation constant of water. Eq. (4) is plotted in Figure 1. The transition from predominantly octahedral to predominantly tetrahedral aqueous Al takes place over a narrow pH interval, namely about 5.5–6.5 at 25°C and 4–5 at 100°C. This narrow pH range is called below a threshold or a quasi-step function.

![Graph showing pH vs. Al/(Al+Si) ratio](image)

DISSOILUTION OF TETRAHEDRAL ALUMINUM IN QUARTZ

By the mass-action law, crystals of a silicate growing from an aqueous solution should incorporate Al³⁺ for Si. The rate and the extent of incorporation should be proportional to the aqueous concentration of Al³⁺ (e.g., Weston and Schwarz, 1972, p. 6), itself a quasi-step function of the pH, as shown in Figure 1. As shown below for quartz, the mole fraction of Al³⁺ taken up in solid solution depends also on aqueous variables other than the molality of tetrahedrally coordinated aqueous Al, and, of course, on the specific constraints of the structure of the mineral in question. The considerations in this section should apply also to other minerals (e.g., opal-CT, kaolinite, halloysite, and pyrophyllite) which accept only a small amount of Al³⁺.

The substitution of Al³⁺ for Si⁴⁺ in tetrahedral sites of quartz involves also the coupled incorporation of monovalent cations to balance charge (e.g., Deer et al., 1966, p. 346; Smith and Steele, 1984). To describe these substitutions the components Si₅O₄ (= I) and MAI₅Si₅O₄ (= II) were chosen. (Si₅O₄ was chosen instead of SiO₃, as the pure silica component to equalize...
Figure 2. Relations among pH, aqueous-Al coordination, and Al coordination in minerals in the system K$_2$O-Al$_2$O$_3$-SiO$_2$-H$_2$O at 25°C, 1 bar, activity of water = 1. Thermodynamic data are from Bowers et al. (1984). Stippled band is threshold from predominant octahedral Al (Al6) to predominant tetrahedral Al (Al4) in the aqueous solution, as taken from Figure 1. Note that threshold shifts downward for increasing temperature and upward for increasing aqueous K$^+$ concentration. pH scale shown at left and dashed contours of equilibrium log(molarity) imposed by the system for aqueous octahedral Al (left) and aqueous tetrahedral Al (right) are for an arbitrary log(K$^+$ mobility) = -3.6. Gibbsite proxies for other oxhydrides of Al; muscovite and pyrophyllite proxy for illite and smectite (Aagaard and Helgeson, 1984); kaolinite proxies for halloysite and other kaolin-group minerals; microcline proxies for K-zeolites. Note that kaolinite, halloysite, pyrophyllite, quartz, and opal-CT that crystallize above the aqueous Al4/Al6 threshold should incorporate significant Al6 to degree permitted by each crystal structure and according to Eq. (7).

The numbers of oxygens in the two components, thus making their molar volumes similar. This choice avoided introducing a fictitious, large excess free energy.) Intracrystalline equilibrium is represented by

$$\text{SiO}_2 + \text{Al(OH)}_{4\text{aq}} + \text{M}_{\text{aq}}^+$$

$$= \text{MAI(Si)}_4 + \text{SiO}_2 + 2 \text{H}_2\text{O},$$

(5)

for which

$$K' = m_{\text{SiO}_2} x_{\text{II}} \lambda_4 m_{\text{AI(OH)}_4} x_{\lambda_2},$$

(6)

where K' is the equilibrium constant for reaction (5), x is the mole fraction of components I (= Si$_2$O$_7$) or II (= MAI(Si)$_4$), and λ is the activity coefficient of I or II in the silicate solid solution. For M$^+ = \text{Na}^+$, $K' = 10^{47}$ at 25°C (using data from Bowers et al., 1984).

Because quartz accepts only a very small mole fraction of component II (Deer et al., 1966, p. 346), $x_I \approx 1$; and because the solvent of a very dilute solution obeys Raoult’s law, $\lambda_4 \approx 1$. Thus,

$$x_{\text{II}} = K m_{\text{M}^+} m_{\text{Al(OH)}_4}/m_{\text{SiO}_2},$$

(7)

which recovers the mass-action law statement given above and in addition yields an expression for the proportionality constant between x_{II} and the moleality of Al3$(\text{OH})_4$. As an illustration, aqueous Al3$(\text{OH})_4$ concentrations at equilibrium with pure phases in the system K$_2$O-Al$_2$O$_3$-SiO$_2$-H$_2$O are given by logarithmic contours in Figure 2b; $m_{\text{Al(OH)}_4}$ exponentially increases upward and to the left in pH-silica activity space. Figure 2a gives equilibrium contours of the log of the sum of all
aqueous octahedral species molalities (i.e., first three on the right of Eq. (2)) throughout the diagram. At any point

\[
\frac{m_{\text{Al,0}}}{m_{\text{Al,0/Al,1}}} = \begin{cases} \text{below the threshold} & \text{for } m_{\text{Si,0}} = 3.6 \text{ as } m_{\text{Si,0}} \text{ increases, both the} \\ \text{above the threshold} & \text{for } \log m_{\text{Si,0}} \end{cases}
\]

(The pH scale in Figure 2 corresponds to the arbitrary choice \(m_{\text{Si,0}} = 3.6 \). As \(m_{\text{Si,0}} \) increases, the log \(m_{\text{Si,0}} \) contours and the pH scale shift upward with respect to the stability fields, which remain put.)

Eq. (7) approximately gives the mole fraction of component II (= MA/Si,0) taken up by the quartz solid solution, with \(m_{\text{Al,0/Al,1}} \) given by Eq. (4) and Figure 1. At low pHs (below threshold in Figure 1), \(\lambda_{\text{II}} \) is low, because \(m_{\text{Al,0/Al,1}} \) is high. At pHs > threshold, \(\lambda_{\text{II}} \) becomes suddenly one or more orders of magnitude greater, because so does \(m_{\text{Al,0/Al,1}} \). Note also that large amount of total dissolved Al and high monovalent cation concentration increase Al uptake by quartz, but high aqueous silica concentration reduces it and does \(\lambda_{\text{II}} \), which represents the structural constraints of the mineral to Al acceptance. Because solid solution of Al in minerals such as quartz, kaolinite, halloysite, and pyrophyllite is highly non-ideal (as required by the fact that it takes place only to a very limited extent), the activity coefficient, \(\lambda_{\text{II}} \), of the MA/Si,0 component in Eqs. (6) and (7) should be one or more orders of magnitude greater than unity, even for the excess-free-energy-minimizing choice of components made above.

Eq. (7) applies for the Al/P/Al,0 pH threshold shown in Figure 1, but H adsorption by crystal surfaces should introduce two modifications: (1) It should change the pH “seen” by the Al ions in the water boundary layer (perhaps a few tens of Ångstroms thick from the crystal surface), thus modifying the Al/P/Al,0 ratio there. (2) It should also endow the crystal surface with an electrical charge, which, depending on the mineral and the specific crystal face involved (Parks, 1967), would favor or inhibit attachment of tetrahedral or octahedral aqueous Al to that face. This attachment contributes to crystal growth proper only if it takes place at kinks, but it would only change the activation barrier to crystal growth if it takes place on an atomically smooth crystal surface (e.g., see Chernov, 1984, pp. 104 ff. and his Figure 3.1). No attempt is made here to quantify these effects.

CRYSTAL MORPHOLOGY AND Al-FOR-Si SUBSTITUTION

The greater the degree of Al-for-Si substitution in halloysite, the more bent (usually around the b axis) become the 1:1 layers of this mineral (Bates, 1959, 1971; Radoslovich, 1963; Brindley, 1980, pp. 145, 158; Harvey, 1980, pp. 282-284; and Drewes, 1982, Figure 4-4). In fact, for most halloysites the Al/Si atom ratio is greater than unity, implying the presence of some Al of the many halloysite analyses in Deer et al. (1966), Weaver and Pollard (1973), and Newman and Brown (1987), only one (no. 2, p. 251, Deer et al., 1966) has no Al. Coupled to this Al/Si > 1 ratio are the facts that many halloysites are tubular and that some Al is indeed tetrahedral. This latter evidence comes from nuclear magnetic resonance work by Komarneni et al. (1985) on a halloysite from Eureka, Utah. From its chemical analyses (nos. 15 and 17 in Table 70 of Weaver and Pollard, 1973, p. 151) we have calculated for this halloysite a structural formula that does contain Al.

These considerations suggest a genetic link between the composition of the aqueous solution (especially pH; also the concentrations of Al(total), monovalent cations, and silica) and the composition and morphology of halloysite crystals grown from it. The link takes place by means of solid solution of Al for Si, and it may well operate in other low-temperature silicates.

NATURAL EVIDENCE

The predictions made above regarding Al incorporation by low-temperature silicates and its relations to aqueous chemistry can be checked against the compositions of paired waters and authigenic silicates that coexist in nature, or which have reached equilibrium in hydrothermal experiments. Several water-mineral pairs from the literature are assessed and collected in Table 2 and plotted on the activity diagrams of Figures 3-5. All the waters plotted in the diagrams of Figures 3 and 5 have pHs greater than the octahedral/tetrahedral threshold in Figure 1, and, in agreement with the predictions above, the minerals coexisting with them (except one) are reported to contain some tetrahedral Al. The exception (Figure 3, water ‘c’) is from the northern end of Lake Chad. A saponite found in a vertisol there coexists with interstitial water that has a high pH, but the saponite nevertheless contains no Al (see Table 2). Two possible reasons for this discrepancy are: (1) Al was scavenged by the kaolinite coexisting with the saponite (Tardy et al., 1974); and (2) the water’s relatively high silica concentration (the largest for all waters plotted in Figure 3) would, according to Eqs. (7) or (8), depress the mole fraction of Al incorporated by the saponite.

The log \(m_{\text{Al,0/Al,1}} \) value calculated here on the basis of equilibrium with Mg-montmorillonite for waters 6, 8, and 18 from Amboseli, Kenya (see Table 2 and figure 3; Stoesz and Hay, 1978) is about 8, which agrees well with the log \(m_{\text{Al,0/Al,1}} \) values measured analytically (which range from 6.7 to 7.7), if the formation of minor amounts of Al complexes with sulfate and fluoride is taken into account.

The water sample plotted in the diagram of Figure 4 has a pH < threshold, and the halloysite coexisting with it indeed contains no Al, also in agreement with
Table 2. Occurrences of coexisting pairs of waters and silicates, with aqueous activities and mineral structural formulae.\(^1\)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Bone Valley Fm., Florida(^1)</th>
<th>Chad basin, Africa(^2)</th>
<th>DSDP Site 323, South Pacific(^3)</th>
<th>Amboseli, Kenya(^1)</th>
<th>Ojo Caliente, Mexico(^4)</th>
<th>Kettleman North Dome, Calif. (^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water no.(^6)</td>
<td>(1)</td>
<td>(2, 3, 11)</td>
<td>(4, 5)</td>
<td>(6, 7)</td>
<td>(8)</td>
<td>(9, 10)</td>
</tr>
<tr>
<td>pH</td>
<td>7.1</td>
<td>7.5</td>
<td>7.0</td>
<td>3.5</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td>log K(^+)/H(^+)</td>
<td>nd(^7)</td>
<td>nd</td>
<td>3.04</td>
<td>4.00</td>
<td>4.38</td>
<td>0.04-0.24</td>
</tr>
<tr>
<td>log Mg(^2+)/(H(^+))(^7)</td>
<td>11.38</td>
<td>11.73</td>
<td>10.56</td>
<td>11.62</td>
<td>13.51</td>
<td>12.70</td>
</tr>
<tr>
<td>log Al(_{tot})</td>
<td>nd(^7)</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Mineral(^8)</td>
<td>montmoril(^9)</td>
<td>nontr(^9)</td>
<td>beidel(^9)</td>
<td>sapon(^9)</td>
<td>smect(^9)</td>
<td>celad(^9)</td>
</tr>
<tr>
<td>Li</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.19</td>
<td>0.22</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Fe(^2+)</td>
<td>0.01</td>
<td>1.77</td>
<td>0.50</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>Mg</td>
<td>0.65</td>
<td>0.21</td>
<td>0.26</td>
<td>1.90</td>
<td>0.37</td>
<td>0.76</td>
</tr>
<tr>
<td>Mn</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al(^3+)</td>
<td>2.43</td>
<td></td>
<td>1.327</td>
<td>0.51</td>
<td>1.08</td>
<td>0.36</td>
</tr>
<tr>
<td>Ti</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(^3+)</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al(^3+)</td>
<td>0.78</td>
<td>0.17</td>
<td>0.267</td>
<td>0.0</td>
<td>0.85</td>
<td>0.12</td>
</tr>
<tr>
<td>Si</td>
<td>7.2</td>
<td>3.83</td>
<td>3.733</td>
<td>4.0</td>
<td>3.55</td>
<td>3.88</td>
</tr>
<tr>
<td>O</td>
<td>18.08</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>6.96</td>
<td>10.00</td>
</tr>
<tr>
<td>OH</td>
<td>5.92</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>11.04</td>
<td>2.00</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) See activity diagrams in Figures 3-5.
\(^2\) See Figure 3.
\(^3\) Activities and activity ratios given were obtained by calculation of distribution of aqueous species for Chad, Amboseli, and Kettleman water samples, but were taken as equal to the respective analytical molalities for all the other waters.
\(^4\) Structural formula given in original reference.
\(^5\) Authigenic mineral associated with water above; abbreviations correspond to montmorillonite, nontronite, beidellite, saponite, smectite, celadonite, sepiolite, kerolite, and halloysite.
\(^6\) Structural formula calculated here from chemical analysis in original reference.
\(^7\) Each of the four authigenic illites given (see reference 10) is an average of all the (analyzed) illites associated with the corresponding interstitial water sample; the average Al\(^3+\) values are shown in Figure 5 next to each corresponding water sample.
\(^8\) nd = not determined.
(1) Altschuler et al. (1963); (2) Gac (1979); (3) Paquet (1969); (4) Kastner and Gieskes (1976); (5) Drever (1976); (6) Stoessell and Hay (1978); (7) Stoessell (1988); (8) Keller et al. (1971); (9) Merino (1975); (10) Merino and Ransom (1982); (11) Tardy et al. (1974).
Figure 3. Activity diagram of log $\text{Mg}^{2+}/(\text{H}^+)$ vs. log(silica), showing pH and compositions of waters that coexist with tetrahedral Al (Al)-bearing phyllosilicates. All points representing waters fall well into field of predominant aqueous tetrahedral Al of Figure 2. Thus, coexisting silicates should also contain significant Al'. All do, except saponite coexisting with water 'c', discussed in text. Compositions of waters and minerals are listed in Table 2. Position of pH scale at left depends on aqueous Mg^{2+} concentration of each water. Solid squares represent water samples coexisting with montmorillonite (Altschuler et al., 1963). Solid circles a, b, and c represent water samples coexisting, respectively, with nontronite, beidellite, and saponite (Gacic, 1979; Paquet, 1969). Open circles represent interstitial water coexisting with smectite and celadonite (Kasiner and Gieskes, 1976; Drever, 1976). Stars represent water samples coexisting with sepiolite and kerosite (Stoessell and Hay, 1978; Stoessell, 1988).

our predictions. This occurrence is particularly significant because (see references above) halloysite usually contains some Al'. The log m_{Al} of -5 to -4.5 predicted in Figure 4 for the Ojo Caliente hot water on the basis of equilibrium with the mineral phases agrees well with the analyzed log $m_{\text{Al\text{-total}}}$ of -4.22 reported by Keller et al. (1971), after allowing for the formation of minor amounts of Al complexes with ligands other than OH$^-$. This agreement is evidence of close approach to equilibrium between the halloysite and the water.

The four 100$^\circ$C aqueous solutions from Kettleman North Dome plotted in Figure 5 have high pHs and coexist with Al-bearing diagenetic illite, in qualitative agreement with the prediction. Here, however, unlike for quartz, halloysite, kaolinite, and pyrophyllite, the amount of Al' substituting for Si is not small; illite (as well as other micas, chlorites, feldspars, and zeolites) contains a major amount of Al' as an essential constituent; all these minerals are further discussed in the next section.

We have found no references to natural or experimental pairs of well-analyzed waters and silica minerals with which to test the prediction (see Eq. (7)) that quartz (or opal-CT) that precipitates from aqueous solutions having pHs greater than the octahedral-to-tetrahedral Al threshold should incorporate significant Al', but that quartz (or opal-CT) that grows from aqueous solutions having a pH < threshold should not. Abundant analytical evidence indeed exists that silica minerals incorporate Al (plus a monovalent cation) and that the Al is in tetrahedral coordination (see Smith and Steele, 1984; Webb and Finlayson, 1987; and references therein).

INTERNAL EVIDENCE FROM ACTIVITY DIAGRAMS

In all the activity diagrams of log(cation/hydrogen) vs. log(silica) for K^+, Na^+, Ca^{2+}, Mg^{2+}, and Fe^{2+} in the systems cation oxide-Al_2O_3-SiO_2-H_2O (Bowers et al., 1984), minerals having stability fields at low cation/hydrogen values (i.e., for any given cation concentration, at low pHs) ideally contain no Al' (gibbsite and other aluminum oxides and oxyhydroxides, kaolinite and polymorphs, pyrophyllite). Minerals near the top of the diagram, however, do contain Al', including muscovite, paragonite, illite, margarite, clinohlore, chamosite, lizardite, ordered and disordered K-feldspars, albite, and nisethite, and zeolites. The addition of sulfate to the activity diagrams in Figures 2, 4, and 5 introduces alunite, $\text{K}^+\text{Al}_5\text{Si}_4\text{O}_{10}(\text{OH})_8$, the stability field for which lies in the lower left (i.e., low pH) region of the diagrams. This is where one would predict alunite to occur on the basis of the pH control proposed here.
of the aqueous Al\(^{3+}\)-to-Al(total) ratio, together with the fact that Al in alunite is octahedrally coordinated (Hendricks, 1937). Thus, the activity diagrams themselves, collectively, are evidence of the control of the Al\(^{3+}\) content of minerals by the pH of the aqueous solution. Nevertheless, because the pH is not the only control, stability boundaries between minerals having different proportions of Al\(^{3+}\) generally are not horizontal: increasing aqueous silica promotes the precipitation of minerals more and more siliceous, which indirectly means minerals having less and less potential room for Al\(^{3+}\). In other words, increasing silica activity causes the Al\(^{3+}\)/Al(total) ratio of the mineral to decrease from 1 for gibbsite, to 2/3 for muscovite and paragonite, to 0 for feldspars and zeolites in the upper part of the diagrams. This left-to-right decrease causes the gibbsite-muscovite and muscovite-feldspar (or zeolite) boundaries to have negative slopes.

SUMMARY AND CONCLUSIONS

By the mass-action law aqueous solutions tend to introduce their species into the minerals that precipitate from them, to the extent allowed by each crystalline structure. In particular, low-temperature silicates take up tetrahedral Al in substitution for Si in proportion to the concentration of Al\(^{3+}\) in the aqueous solution. Because the latter concentration turns out to be almost a step function of the pH (Figure 1), so does the mole fraction of Al\(^{3+}\) incorporated by a low-temperature silicate. Furthermore, this mole fraction of Al\(^{3+}\) is also proportional to the concentrations of aqueous monovalent cations and total dissolved Al, and inversely proportional to that of aqueous silica.

Presumably the uptake of Al(OH)\(_2^-\) needs to overcome a lower activation barrier if it attaches to a tetrahedral site than if it attaches to an octahedral site in the growing crystal. On the other hand, crystal surface charge, which is positive (negative) for pH < (>) the isoelectric point, probably tends to increase the activation energy both for the attachment of aqueous octahedral Al\(^{3+}\) at pH < threshold and for that of aqueous tetrahedral Al(OH)\(_2^-\) at pH > threshold. This applies particularly to silicates having an isoelectric point not far from the aqueous Al\(^{3+}\)-to-Al\(^{3+}\) threshold pH.

For halloysites, the Al-for-Si substitution causes bending of the layers (e.g., Drever, 1982, Figure 4-4). A genetic link emerges among the solution composition (especially its pH; also its m\(_{\text{Al(total)}}\), m\(_{\text{M}^+}\), and m\(_{\text{HOH}}\)), the detailed chemistry of halloysite (which commonly includes significant Al\(^{3+}\) and coupled monovalent cations), and the morphology of halloysite crystals, typically tubular about the b axis. Similar links may operate in other minerals.

The predicted pH control of the Al\(^{3+}\) content of a silicate is consistent with the distribution of mineral stability fields in activity diagrams. Also, the prediction is confirmed by comparing coexisting waters and phyllosilicates from weathering, hydrothermal, and diageneric occurrences. In the two pairs for which the waters were analyzed for Al, its concentration is close to equilibrium with the solid phases. As an additional check on the predictions made here, it would be useful to determine the Al\(^{3+}\) content of quartz overgrowths (or other low-temperature silica phases) precipitated from Al-bearing waters of known pH and composition; we have found no such data in the literature. Conversely, analytically determined amounts of Al\(^{3+}\) in authigenic low-temperature silicates such as quartz, opal-CT, kaolinite, halloysite, and phyllosilite could be used to infer pH at crystallization. Knowledge of mole fractions of Al\(^{3+}\) in those minerals and of the aqueous concentrations of monovalent cations, total dissolved aluminum, and silica, would allow us to infer (by Eq. (7)) the activity coefficients of the Al\(^{3+}\)-bearing component in the mineral solid solution.
ACKNOWLEDGMENTS

It is a pleasure to thank R. K. Stoessell, Yves Tardy, H. M. May, W. D. Keller, A. Hoch, A. Basu, B. F. Jones, D. Still, J. Tolén, B. Hill, and an anonymous reviewer for their help, suggestions, and constructive criticism. Acknowledgment is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research through grant 16636-AC2, and to the Department of Geology, Indiana University, for support.

REFERENCES

(Received 30 July 1988; accepted 25 September 1988; Ms. 1768)