To prospective graduate students
in Geological Sciences

Some beginning graduate students have not only a particular field in mind, but even a specific professor with whom they would like to study. Many don't. They have uncertainties ranging from minor to gigantic. For all, research will be an integral part of graduate study. For those joining us at Indiana, the discussions of research on the following pages will — sooner or later — be of interest. In the meantime, here's some advice.

Follow your interests, whether firm or flimsy, long-term or recent. Don't worry if your initial choice of field within the earth sciences represents a working hypothesis rather than a secure decision. Don't worry if your interest in geoscience feels diffuse rather than passionate. Interests — strong ones — are indeed what inspire people to complete graduate degrees and to develop careers in science. They do not, however, blossom automatically when you begin correspondence with graduate schools. Interests come and go, sometimes rapidly; but at the beginning, nearly all develop slowly. We know that — we've been there.

Don't feel that you must choose a particular field because your undergraduate experience prepares you for it or avoid another because your preparation has not been optimal. If there is ever a time to make a change, to choose what you would like to do, this is the time. Don't let sketchy information about today's job markets, or forecasts about tomorrow's, rule your choice of field. Start from your interests, and remember that they can and will be refined by your own development and by practical considerations during your entire lifetime, including your years in graduate school.

You may or may not feel hungry for the information on the following pages. Some prospective students, particularly those who have already completed master's degrees and are looking for a doctoral program, may dissect and analyze this brochure. Many others may only glance at it. We provide it as the start of a dialogue and urge you to contact directly faculty members whose research area is of interest to you.

Write to any faculty member (or for general information, to the Graduate Adviser) at Department of Geological Sciences, Indiana University, Bloomington, Indiana 47405. Or call (812) 855-7214 and we'll call back. If convenient in this day and age, fax (812) 855-7899, being sure to indicate to whom your message should be delivered.
Table of Contents

with telephone numbers and e-mail addresses *

<table>
<thead>
<tr>
<th>Graduate Programs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities</td>
<td>1</td>
</tr>
<tr>
<td>Biogeochemistry and Organic Geochemistry</td>
<td>2</td>
</tr>
<tr>
<td>Simon Brassell (3786, simon)</td>
<td>8</td>
</tr>
<tr>
<td>John Hayes (5610, biogeo)</td>
<td>32</td>
</tr>
<tr>
<td>John Jasper (9203, jasper)</td>
<td>51</td>
</tr>
<tr>
<td>Peter Ortoleva (2717, ortoleva)</td>
<td>53</td>
</tr>
<tr>
<td>Lisa Pratt (9203, prattl)</td>
<td>62</td>
</tr>
<tr>
<td>Arndt Schimmemann (7645, aschimm)</td>
<td>64</td>
</tr>
<tr>
<td>Jeffrey White (0731, whitej)</td>
<td>78</td>
</tr>
<tr>
<td>Economic Geology, Clays and Industrial Minerals</td>
<td>8</td>
</tr>
<tr>
<td>Simon Brassell (3786, simon)</td>
<td>32</td>
</tr>
<tr>
<td>Donald Carr (1359, carrd)</td>
<td>35</td>
</tr>
<tr>
<td>Colin Harvey (0670)</td>
<td>49</td>
</tr>
<tr>
<td>Brian Keith (4213, keithb)</td>
<td>54</td>
</tr>
<tr>
<td>Haydn Murray (5583, murray)</td>
<td>59</td>
</tr>
<tr>
<td>Lisa Pratt (9203, prattl)</td>
<td>64</td>
</tr>
<tr>
<td>Edward Ripley (1196, ripley)</td>
<td>68</td>
</tr>
<tr>
<td>Geobiology and Paleontology</td>
<td>10</td>
</tr>
<tr>
<td>Simon Brassell (3786, simon)</td>
<td>32</td>
</tr>
<tr>
<td>Robert Dodd (5322, dodd)</td>
<td>36</td>
</tr>
<tr>
<td>Donald Hattin (8232, hattin)</td>
<td>50</td>
</tr>
<tr>
<td>John Hayes (5610, biogeo)</td>
<td>51</td>
</tr>
<tr>
<td>Alan Horowitz (3536, horowitz)</td>
<td>52</td>
</tr>
<tr>
<td>Gary Lane (7994, lane)</td>
<td>56</td>
</tr>
<tr>
<td>Lisa Pratt (9203, prattl)</td>
<td>64</td>
</tr>
<tr>
<td>Carl Rexroad (1350)</td>
<td>67</td>
</tr>
<tr>
<td>Michael Savarese (9729, msavares)</td>
<td>70</td>
</tr>
<tr>
<td>Robert Shaver (4716, shaverl)</td>
<td>73</td>
</tr>
<tr>
<td>Geophysics and Tectonophysics</td>
<td>12</td>
</tr>
<tr>
<td>Haydar Al-Shakri (3612, halsbakr)</td>
<td>28</td>
</tr>
<tr>
<td>Ned Bleuer (1354, bleuer)</td>
<td>31</td>
</tr>
<tr>
<td>Bruce Douglas (3848, douglasb)</td>
<td>39</td>
</tr>
<tr>
<td>Jeremy Dunning (8392, dunning)</td>
<td>41</td>
</tr>
<tr>
<td>Andrew T. Fisher (9992, fisher)</td>
<td>42</td>
</tr>
<tr>
<td>Michael Hamburger (2934, hambu)</td>
<td>47</td>
</tr>
<tr>
<td>Gary Pavlis (5141, pavlis)</td>
<td>63</td>
</tr>
<tr>
<td>Vishnu Ranganathan (7524, ranganat)</td>
<td>64</td>
</tr>
<tr>
<td>Albert Rudman (7310, rudman)</td>
<td>67</td>
</tr>
<tr>
<td>Hydrogeology and Environmental Geochemistry</td>
<td>14</td>
</tr>
<tr>
<td>Andrew T. Fisher (9992, fisher)</td>
<td>42</td>
</tr>
<tr>
<td>Hendrik Haitjema (0731, haitjema)</td>
<td>46</td>
</tr>
<tr>
<td>Noel Krohe (8197, krothen)</td>
<td>55</td>
</tr>
<tr>
<td>Greg Olyphant (5154, olyphant)</td>
<td>60</td>
</tr>
<tr>
<td>Vishnu Ranganathan (7524, ranganat)</td>
<td>66</td>
</tr>
<tr>
<td>Jeffrey White (0731, whitej)</td>
<td>78</td>
</tr>
</tbody>
</table>

* all phone numbers are (812) 855-****
and e-mail addresses are: username@indiana.edu
Igneous and Metamorphic Petrology and Geochemistry .. 18
Abhijit Basu (6654, basu) .. 30
James Brophy (6417, brophy) ... 34
Michael Dorais (5404, doraism) ... 38
Peter Ortoleva (2717, ortoleva) ... 62
Edward Ripley (1196, ripley) ... 68
David Towell (5722, towell) .. 76
Charles Vitaliano (1407, vitalian) .. 77
Robert Wintsch (4018, wintsch) .. 79

Quaternary Geology and Geomorphology .. 20
Ned Bleuer (1354, bleuer) ... 31
Gordon Fraser (1351, fraser) ... 44
Greg Olyphant (5154, olyphant) .. 60
Lawrence Onesti (4404, onesti) .. 61

Sedimentary Petrology and Geochemistry ... 22
Abhijit Basu (6654, basu) ... 30
Robert Dodd (5322, dodd) .. 36
Colin Harvey (0670) ... 49
Donald Hattin (8232, hattin) ... 50
Alan Horowitz (3536, horowitz) ... 52
Enrique Merino (5088, merino) ... 58
Haydn Murray (5583, murray) ... 59
Peter Ortoleva (2717, ortoleva) .. 62
Lisa Pratt (9203, prattl) ... 64
Edward Ripley (1196, ripley) .. 68
Lee J. Sutner (5581, sutner) .. 74
Robert Wintsch (4018, wintsch) .. 79

Sedimentology, Stratigraphy and Basin Analysis .. 24
Abhijit Basu (6654, basu) ... 30
Simon Brassel (3786, simon) .. 32
Robert Dodd (5322, dodd) .. 36
John Droste (1558, drose) ... 40
Gordon Fraser (1351, fraser) .. 44
Lloyd Furer (2503, furerl) .. 45
Donald Hattin (8232, hattin) ... 50
Brian Keib (4213, keibh) .. 54
Peter Ortoleva (2717, ortoleva) .. 62
Lisa Pratt (9203, prattl) ... 64
Vishnu Ranganathan (7524, ranganat) ... 66
Robert Shaver (4716, shaver) .. 73
Lee J. Sutner (5581, sutner) .. 74

Tectonics and Structural Geology .. 26
Haydar Al-Shukri (3612, halshukr) ... 28
Bruce Douglas (3848, douglasb) .. 39
Lloyd Furer (2503, furerl) .. 45
Michael Hamburger (2934, hamburg) .. 47
Peter Ortoleva (2717, ortoleva) .. 62
Gary Pavlis (5141, pavlis) .. 63
Lee J. Sutner (5581, sutner) .. 74
Robert Wintsch (4018, wintsch) .. 79
The Department of Geological Sciences has a wide range of specializations, from geobiology to geophysics, from paleontology to petrology, and from economic to environmental geology. We have 30 teaching and research faculty, many with strongly multidisciplinary interests. Our field projects take us to Europe, Asia and Australia, as well as North, Central and South America, and we have excellent analytical facilities, both in terms of equipment and support staff. This brochure is designed to give prospective students and interested colleagues some insight into the strengths of our research programs, and breadth of staff and facilities.

Several graduate degree programs are available at Indiana University. Within the Department of Geological Sciences all degrees from the B.A. and B.S. to the Ph.D. are available in all of the fields of study outlined in this brochure. In addition to these, degrees from related fields in Chemistry and Environmental Science are available because of several faculty with joint appointments. We also offer a specific three-year, double Masters degree in Geological Sciences and Environmental Sciences in cooperation with the School of Public and Environmental Affairs.

Department of Geological Sciences
M.S., M.A.T., Ph.D.

Department of Chemistry
M.S., Ph.D.

School of Public and Environmental Affairs
M.S., Ph.D.

Funding for our research programs comes from a wide range of sources. Many of our faculty are funded by the National Science Foundation, but our research has also been funded by the Department of Energy, the National Aeronautics and Space Administration, the Petroleum Research Fund of the American Chemical Society, the U.S. Geological Survey, the U.S. Bureau of Land Management, the U.S. Bureau of Mines, the National Oceanographic and Atmospheric Administration, the Office of Surface Mining, the Environmental Protection Agency, the Gas Research Institute, and over a dozen industrial sources. Graduate student assistantships and fellowships are available from these sources and through the College of Arts and Sciences as teaching assistantships (Associate Instructorships); about 20 are awarded annually.

The best first contact is the scientist who most closely fits your particular research interest. However, the graduate student record office, administered by Mary Iverson (812-855-7214), is the best place to get more detailed information on application materials and deadlines. All faculty may be contacted by telephone or E-mail at the numbers given in the table of contents, or, of course by mail: at Department of Geological Sciences, Indiana University, Bloomington, IN 47405.
Indiana Geological Survey, Norman Hester, Director.
The Indiana Geological Survey occupies the east wing of the Geology Building with a staff of 26 full-time, permanent geoscientists and a support staff of 23, as well as temporary part-time and full-time personnel employed on specific projects. Working relationships between the Department and the Survey are good, especially as relates to Indiana and mid-western geology. The Director, Norman Hester, is a part time professor of the Department of Geological Sciences, which ensures good communication and cooperation with Departmental research activities. His research interests are focused on Pennsylvanian stratigraphy with an emphasis on the reconstruction of sedimentary environments, the formation and preservation of peats, and the prediction of coal quality and the feasibility of underground mining operations. A particular project underway is the use of seismic stratigraphy to reconstruct the evolution and tectonic history of rifts and grabens, the Rough Creek Graben of the southern Illinois Basin in particular. In connection with this, broad-scale studies of tectonic controls on sedimentation in the Illinois and Appalachian Basins are on-going.

In addition to its main office, the Survey has a separate core storage and examination facility, and a sample preparation and physical testing lab. The Survey is equipped with a wide variety of field, physical testing, and chemical analytical equipment. In addition it has a well-equipped photography lab and a completely automated state-of-the-art drafting section with a CAD system capable of generating digitized base maps for GIS applications.

The Survey conducts multidisciplinary research in the broad fields of energy and mineral resources, environmental geology and geologic hazards, and geochemistry. Projects include: evolution and tectonic history of the Illinois Basin, investigations on geologic controls on deposition of low-sulfur coals, geologic characterization of petroleum reservoirs, characterization of limestones used in clean coal technology, coal mine reclamation, geologic framework of groundwater resources and their susceptibility to contamination, and hazards associated with mined-land subsidence, earthquakes, and lake-shore erosion. The Survey is actively engaged in public-service activities, education programs, and cooperative studies with other federal and state agencies and universities.

There are abundant opportunities for students to do research on Indiana geology, and the Survey supports their research in a number of ways. Subsurface records from over 70,000 wells are readily available, and access to
equipment is possible. Survey staff are available for advice and consultation and many have supervised student theses or been members of thesis committees. Students may also be employed on one or more of the many internally- and externally-funded projects being carried out by the Survey staff. Some of these may evolve into thesis projects while others will provide valuable field and laboratory experience to students in conducting professional-level research in areas outside of their thesis topic.

Geological Sciences Library: Lois Heiser, Librarian.

The Geology Library, occupying the entire sixth floor of the Geology Building, continues to grow in size and reputation and now has passed 93,000 volumes, 290,000 maps and 23,000 microforms. CD-ROM continues to be a growing format in the earth sciences. The library currently has three CD-ROM stations, and over 40 data files on more than 100 discs. GEOREF receives the greatest use. Improvements continue to be made in the automated IU library catalog. It is possible to display current issues of journals received as well as the call number and holdings of the bound volumes. In addition, the user can immediately see the status of any title (reserves, charged out, lost or at bindary) or journal runs which have been shelved in the storage area. Regular funds, private donations, and exchange of the Indiana Geological Survey’s publications help to make this one of the most complete geology libraries in the country.

The Department of Geological Sciences and the Indiana Geological Survey share six full time and two part time employees. The combined facilities include three computer graphic work stations with large font digitizers and one larger format plotter for the preparation of graphics from line work drawings to full color map separates. Photographic facilities include a fully equipped black and white darkroom, 200-18% enlarger copy camera, film processor and macro- and micro-photographic capabilities. These facilities support all faculty and faculty-student joint research projects.
Seismic Station, Michael W. Hamburger, Director.
The Departmental seismic station has been in continuous operation since 1964. It is one of the most sensitive in the region because it is firmly anchored in bedrock, and has six channels — three long-period components for monitoring world-wide earthquakes, and three short-period components for local, low intensity monitoring. The station also maintains three portable seismic recording instruments for the study of micro-earthquake and aftershock studies. It also maintains a 48 channel seismic system for reflection and refraction seismology, and a 12 channel system for refraction studies.

Geological Field Station, Cardwell, Montana, Lee J. Suttner, Director.
The Department of Geology maintains a Geologic Field Station, a permanent teaching and research facility in the Tobacco Root Mountains of southwestern Montana. In addition to comfortable living quarters and dining facilities, the Station possesses a modest library, a rock-preparation laboratory, and a fleet of vehicles that can be rented at a modest rate for field research. Courses taught at the Field Station include introductory physical and historical geology, advanced undergraduate geologic mapping and field study and advanced graduate research seminars. The Field Station serves as a base for graduate students and visiting scientists who are actively doing research in the northern Rocky Mountains.

Electron Beam Facility: Dr. Michael J. Dorais, Director.
The Department is continually upgrading our analytical facilities. In 1992 we replaced our 20-year-old E-TEC autoprobe with a new Cameca SX50 superprobe, and we replaced one Phillips XRG-2500 diffractometer with an automated 3100 series model. Permanent equipment is listed below.

- Cameca SX50 Superprobe, with four spectrometers, energy dispersive X-ray analysis, SEM, BSE and cathodoluminescence capabilities
- PAD V Scintag automated X-ray diffractometer
- Phillips XRG-3100 automated X-ray diffractometer
- Phillips XRG-2500 X-ray diffractometers (2)
- Huber Precession Camera
- Ion Tech ion thinner
- Denton DV-502 carbon coater
- Nuclide Luminoscope (2)
Analytical Chemistry Facility: Mark Gilstrap, Manager.
The departmental analytical facilities are unique among even large universities. Even before the present facility was completed in 1964, great pride has been taken in our ability to perform elemental determinations routinely possible only at Federal facilities.

These laboratories provide student access to both modern analytical instrumentation and classical wet chemical methods. The entire existing facility will be relocated to the same floor as the Geochemistry Section of the Indiana Geological Survey in order to provide a more facile interaction with these related facilities. Completion is expected by mid-summer 1993.

In addition to the latest safety considerations, and scrupulous attention to airborne contaminants, care is being taken to preserve some of the more unique features of the facility such as the ability to do perchloric acid digestions.

The Instrumentation Laboratory will be immediately adjacent to the wet chemical preparation laboratory. Two of our major instruments, the JY-38VHR ICP and the Perkin-Elmer 5100 Zeeman AA, were upgraded to the latest hardware and software revisions just this year. Both in-house and world-wide network connections are routinely used to communicate results.

Jobin-Yvon JY-38VHR Sequential Slew-Scan Inductively Coupled Argon Plasma Spectrometer
Jarrell-Ash Atomcomp 26 channel ICP Spectrometer model 975 w/ ThermoSpec software and hardware upgrades
Perkin-Elmer 5100/Zeeman Flame/Furnace Atomic Absorption Spectrometer
Coulometrics 5010/20/30 Carbonate/Total Carbon Analyzer
Leco SC132 Sulfur Determinator
Dionex 4500i Ion Chromatograph
Wescan 266 Ion Chromatograph
Shimadzu RF5000 U Spectrofluorometer

Mass Spectrometry Laboratory: Steve Studley, Manager.
The mass spectrometry laboratory has expanded in size, capabilities, and personnel. The addition of extra lab space has provided room for two quadrupole mass spectrometers allowing researchers the capability of determining structural information of unknowns. Dr. Arndt Schimmelmann, who recently joined the department, will be responsible for those instruments.

Light stable isotope analyses continue as before with both dual-inlet and GC-combustion instruments. The Finnigan 252 mass spectrometer has become a testbed for new interfaces to isotope ratio mass spectrometry. Experiments
are being conducted using a dissolved organic carbon (DOC) analyzer-combus-
tion interface, an LC-combustion interface, and a micro-particle combustion
interface.

Permanent equipment includes:

- Nuclide 6-60-rms isotope ratio mass spectrometer w/ dual Faraday cup collec-
tor system
- Finnigan MAT Delta-E isotope ratio mass spectrometer
- Finnigan MAT Delta-S gas chromatograph-combustion-isotope ratio mass
 spectrometer system prototype
- Finnigan MAT 252 isotope ratio mass spectrometer with GC/Combustion
 interface
- Finnigan MAT Incos 50 GC/MS quadrupole mass spectrometer system
- Finnigan MAT TSQ 700 automated GCMS/MS triple-quadrupole mass spec-
trometer system
- Adjacent laboratory housing C,H,O, and S extraction lines

Electron Microscope Facilities.
Complementing the optical and electron microscope capabilities of our
superprobe are several other electron microscopes on campus. Most of these are
housed in the Biology Department, but others are in the Physics or Optometry
Departments.

- Cambridge S250 MKII SEM
 - GW Electronics BSE detector
 - GW Electronics cathodoluminescence detector
 - Tracor Northern TN 5500 EDX detector
- Phillips EM 300 TEM
- Phillips EM 301 TEM
- Denton carbon coater (2)
- Polaron E 5100 sputter coater
- Siemens 101 TEM
- Varian 981-2145 electron beam gun (3)
- Varian 981-2148 LEED electronics (2)
- Varian 981-0127 Auger/LEED optics (2)

Computer Facilities: Brian Snow, Manager.
Computer facilities available for research exist in the Department and in a
campus-wide facility. Within the Department, we have 5 Sun, 3 DEC
(MicroVAX), over 30 Apple and over 50 PC workstations. Most stations are
connected through a Departmental network, supporting NFS, Novell, Ethertalk
and Internet. Also available on campus are 9 VAX computers and an
AMDAHL mainframe. The Department and University support a wide variety of hardware and software in many diverse fields.

Electronics Shop: Terry Stigall, Manager.
The Department maintains an electronics shop, with testing equipment and a stock room. Ms. Stigall maintains and troubleshoots all electronic equipment in the Department. This includes computers and related equipment, the Superprobe and X-ray diffractometers, the seismograph station, and geophysical field equipment. She also designed, implemented and maintains the Departmental computer network, and designs and builds specialized electronic equipment as needed.

Machine Shop: Charles Miller, Machinist.
The department's machine shop houses all typical equipment, including several lathes, vertical milling machines, surface plates, and a Taft Pierce surface grinder. In addition to maintaining much of the Departmental equipment, Mr. Miller has designed, built and installed portable seismographs, a large capacity flume for hydrodynamic study of modern invertebrates, and high temperature furnaces for experimental petrology.

Rock Preparation Laboratory: Lou Bucklin, Manager.
The Department supports a rock preparation facility, with the part-time supervision of Lou Bucklin. The lab is set up to prepare thin sections, with both water and oil lubricated rock saws, a thin section cut off saw, and grinding and polishing plates. We are also set up for rock crushing and mineral separation, with a jaw crusher, disk grinder and steel, tungsten carbide and alumina shatter boxes.

For mineral separation the Department also has four automated sieve shakers (RO-TAP), a Franz magnetic separator, and a dedicated fume hood for use of heavy liquids.
Research Faculty

Simon C. Brassell
Biological, Organic, and Petroleum Geochemistry; Basin Analysis
Professor, Geological Sciences and Environmental Sciences; B.Sc., Ph.D. Bristol (England), 1980.

John M. Hayes
Biological, Organic, and Petroleum Geochemistry
Distinguished Professor, Geological Sciences, Chemistry, and Environmental Sciences; B.S. Iowa State; Ph.D. M. I. T, 1966.

John P. Jasper
Chemical Oceanography, Organic Geochemistry, Biogeochemistry

Peter J. Ortoleva
Geochemistry, Kinetics and Transport Mechanisms, Basin Analysis
Professor, Chemistry and Geological Sciences; B.S. Rensselaer Polytechnic Institute; Ph.D. Cornell, 1970.

Lisa M. Pratt
Sedimentary and Organic Geochemistry, Stratigraphy
Associate Professor, Geological Sciences; B.A., M.S. North Carolina; M.S. Illinois; Ph.D. Princeton, 1981.

Arndt Schimmelmann
Organic Geochemistry, Chemical Oceanography
Assistant Scientist, Geological Sciences and Chemistry; M.S. Univ. Braunschweig (Germany); Ph.D. UCLA, 1985.

Jeffrey R. White
Aquatic Chemistry, Biogeochemistry, Limnology
Associate Professor, Geological Sciences; B.A. Gettysburg College, M.S. Rutgers, Ph.D. Syracuse, 1984.

Facilities

All major analytical equipment needed for biogeochemical and organic geochemical research is available in the Department of Geological Sciences. Our instrumentation for stable isotopic measurements includes two coupled gas chromatograph-mass spectrometer units with the capability of determining carbon isotopic ratios of individual organic compounds. In fact, one of these instruments is the prototype of the Finnigan isotope ratio monitoring instrument. Structural identification of organic molecules is done using a Finnigan MAT 700 triple-sector mass spectrometer or an Incon XL ion trap. Routine gas chromatography of hydrocarbons is performed on one of three Hewlett Packard 5890A instruments. Organic-sulfur compounds are monitored with a gas chromatograph equipped with a flame photometric detector in addition to a flame ionization detector. The Biogeochemical laboratories are also equipped with a LECO carbon/sulfur analyzer and a Geofina Hydrocarbon Meter for doing programmed pyrolysis/gas chromatography. In addition to major equipment, our laboratory facilities include numerous wet-chemical benches with fume hoods, sample preparation area for organic geochemical materials, freeze-drying apparatus, refrigerators, nitrogen evaporator, and cryogenic vacuum lines for isotopic preparation of carbon, nitrogen and sulfur samples.

Research

A growing community of students, faculty, postdoctoral fellows, and research staff (a total of 30 people during 1993) is working on the analysis and interpretation of molecular and isotopic records of ancient environments and biogeochemical processes. Both details of specific environments and global phenomena are being explored. In order to develop an improved understanding of biogeochemical processes, considerable attention is being devoted to the study of modern environments. The work of biogeochemists is relevant to the search for fossil-fuel resources and to the monitoring of environmental changes. Projects within the laboratories are focused both on petroleum geochemistry and on the study of ancient greenhouse phenomena.

Representative Publications

Economic Geology, Clays and Industrial Minerals

Research Faculty

Simon C. Brassell
Biological, Organic, and Petroleum Geochemistry; Basin Analysis
Professor, Geological Sciences and Environmental Sciences; B.Sc., Ph.D. Bristol (England), 1980.

Donald D. Carr
Industrial Minerals, Coal Geology
Senior Scientist, Indiana Geological Survey and Professor, part-time, Geological Sciences; B.S., M.S., Kansas State; Ph.D Indiana, 1969.

Colin Harvey
Economic Geology, Clays and Industrial Minerals
Research Scientist, Geological Sciences; B.Sc., M.Sc. (Honors) University of Auckland, New Zealand; Ph.D. Indiana, 1980.

Brian D. Keith
Petroleum Geology, Basin Analysis, Sedimentology and Stratigraphy
Associate Scientist, Indiana Geological Survey and Associate Professor, part-time, Geological Sciences; B.A. Amherst; M.S. Syracuse; Ph.D. Rensselaer Polytechnic Institute, 1974.

Haydn H. Murray
Economic Geology, Clays and Industrial Minerals
Professor, Geological Sciences; B.S., M.S., Ph.D. Illinois, 1951.

Lisa M. Pratt
Sedimentary and Organic Geochemistry, Stratigraphy
Associate Professor, Geological Sciences, B.A., M.S. North Carolina; M.S. Illinois; Ph.D. Princeton, 1981.

Edward M. Ripley
Petrology of Metallic Ore Deposits, Isotopic Geochemistry
Professor, Geological Sciences; B.S. Illinois State, M.S. Minnesota; Ph.D. Penn State, 1976.

Facilities

Most analytical facilities needed for the described research are located within our building. Examples include: three stable isotope ratio mass spectrometers with associated sample preparation systems, C-O-H-S elemental analyzers, two coupled gas chromatograph-mass spectrometer units with the ability to analyze individual organic molecules, fluid inclusion microthermometry units, laser ablation fluorination system for isotopic microanalysis, Cameca SX-50 automated microprobe with SEM capabilities, differential thermal analyzers, X-ray diffractometers, high intensity magnetic separator for clay size materials and inductively coupled plasma and atomic absorption spectrometers for major and trace element analyses. We also have a rock preparation lab, machine shop, electronics shop, PC lab and central computing facilities.
Research

Research in economic geology at IU covers aspects of fossil fuels, industrial minerals and metallic ore deposits. Within fossil fuels, Simon Brassell's research is in molecular organic geochemistry as it relates to the identification of petroleum source rocks and to the development and application of molecular tools in the evaluation of depositional environments and processes of petroleum formation-accumulation. Lisa Pratt studies the geology and organic geochemistry of fine-grained sedimentary rocks, especially in the evaluation of potential petroleum source rocks, and the genesis of metaliferous black shales. Brian Keith's research centers on the determination of geologic controls over reservoir character and the potential for future exploration for industrial minerals. Don Carr evaluates a variety of industrial minerals, including carbonate building stones, aggregate, gypsum and sand and gravel. His research deals with the chemical and physical properties of materials and how they relate to stone use, preservation and durability. Haydn Murray and Colin Harvey do research on the origin, depositional environments, geochemistry and uses of clay and industrial minerals. They study residual, hydrothermal and sedimentary deposits using a wide range of analytical techniques. Edward Ripley's research interests include the genesis of metallic ore deposits and application of stable isotopes to ore forming problems. Processes of ore formation in sedimentary, hydrothermal and magmatic environments are all under investigation using a combination of analytical, theoretical computational and experimental methods.

Representative Publications

Geobiology and Paleontology

Research Faculty

Simon C. Brassell
Biological, Organic, and Petroleum Geochemistry; Basin Analysis
Professor, Geological Sciences and Environmental Sciences; B.Sc., Ph.D. Bristol (England), 1980.

J. Robert Dodd
Paleoecology, Carbonate Sedimentology and Petrology
Professor, Geological Sciences; B.A. Indiana; M.A., Ph.D. Caltech, 1961.

Donald E. Hattin
Stratigraphy, Sedimentology, Paleocology and Paleontology
Professor, Geology; B.S. Massachusetts; M.S., Ph.D. Kansas, 1954.

John M. Hayes
Biological, Organic, and Petroleum Geochemistry
Distinguished Professor, Geological Sciences, Chemistry, and Environmental Sciences; B.S. Iowa State; Ph.D. M.I.T., 1966.

Alan S. Horowitz
Geobiology and Paleontology
Senior Scientist and Professor, part-time, Geological Sciences; B.A. Washington and Lee; M.S. Ohio State; Ph.D. Indiana, 1957.

N. Gary Lane
Geobiology and Paleontology
Professor, Geological Sciences; B.A. Oberlin; M.S., Ph.D. Kansas, 1958.

Lisa M. Pratt
Sedimentary and Organic Geochemistry, Stratigraphy
Associate Professor, Geological Sciences; B.A., M.S. North Carolina; M.S., Illinois; Ph.D. Princeton, 1981.

Carl B. Rexroad
Geobiology and Paleontology
Senior Scientist, Indiana Geological Survey and Professor, part-time, Geological Sciences; B.A., M.S. Missouri, Ph.D. Iowa, 1955.

Michael Savarese
Geobiology and Paleontology
Assistant Professor, Geological Sciences; B.S., M.S. Rochester; Ph.D. California/Davis, 1989.

Robert H. Shaver
Paleobiology and Stratigraphy
Professor (ret.), Geological Sciences, B.S., M.S., Ph.D., Illinois, 1951.

Facilities

Facilities used in geobiological and paleontological studies range from simple to highly sophisticated. The paleontology lab suite includes a sample preparation lab and associated equipment; an acid bath lab; a flume for experimental biomechanics; Macintosh II and Hewlett-Packard computer work stations dedicated to image analysis, morphometrics and other paleontologic applications; and salt-water aquaria. A variety of microscopes including SEM and cathodoluminescence are available as is a thin section preparation lab and extensive fossil collections from Indiana and beyond. A well-equipped organic geochemistry laboratory and sample preparation facilities and mass spectrometers for stable isotope analysis are also valuable facilities for research in this area.
Research

Research in geobiology and paleontology at Indiana University ranges from study of chemical fossils in Precambrian rocks to flume experiments with models of fossils of many types. Our faculty and students have or are conducting research on calcareous algae, sponges, archeocyathids, corals, bryozoans, brachiopods, crinoids, blastostites, mollusks, ostracods, conodonts and vertebrate footprints. Emphasis in research on body fossils is on the study of evolutionary paleontology, phylogenetic inference, functional morphology, paleoecology, depositional reconstruction, taphonomy and biosтратigraphy. Study of chemical fossils emphasizes their use in interpreting depositional environments, geochemical cycles and interpreting the history of the earth, especially its biosphere, hydrosphere and atmosphere.

Representative Publications

Geophysics and Tectonophysics

Research Faculty

Haydar Al-Shukri
Geophysics, Seismology, Geomatography
Research Associate, Geological Sciences; B.S., M.S. Baghdad University, Ph.D. St. Louis University, 1990.

Ned K. Bleuer
Quaternary Geology, Geomorphology, Neotectonics
Associate Scientist, Indiana Geological Survey and Assistant Professor, part-time, Geological Sciences; B.S. Wisconsin, M.S. Illinois; Ph.D. Wisconsin, 1971.

Bruce J. Douglas
Structural Geology, Rock Mechanics, Tectonics

Jeremy Dunning
Structural Geology, Tectonics
Associate Professor, Geological Sciences and Environmental Sciences; B.A. Colgate; M.S. Rutgers; Ph.D. North Carolina, 1978.

Andrew T. Fisher
Heat Flow, Borehole Geophysics, Crustal Structure
Associate Scientist, Geological Sciences and Indiana Geological Survey; B.S. Stanford; Ph.D. University of Miami, RSMAS, 1989.

Michael W. Hamburger
Geophysics, Seismology, Tectonics
Associate Professor, Geological Sciences; B.A. Wesleyan; M.Sc., Ph.D. Cornell, 1986.

Gary L. Pavlis
Geophysics, Seismology, Tectonics
Associate Professor, Geological Sciences; B.S. South Dakota State; Ph.D. Washington, 1982.

Vishnu Ranganathan
Hydrogeology, Subsurface Fluid, Heat and Mass Transport
Assistant Professor, Geological Sciences; B.S. Bombay, M.S. Cincinnati; Ph.D. Louisiana State, 1988.

Albert J. Rudman
Professor, Geological Sciences; B.S., M.A., Ph.D. Indiana, 1963.

Facilities

The seismology group makes extensive use of a variety of computer facilities available within the Department and the University. Departmental facilities include a cluster of Sun workstations within the seismology research laboratory, complemented by an extensive collection of software. Through the Indiana University Center for Innovative Computer Applications, we also have access to specialized graphics facilities and programming talent. Finally, the central campus computer facilities provide unrestricted access to a number of VAX computers and a large AMDAHL mainframe, linked in a campuswide computer network. The geophysics group also has extensive facilities for field geophysical research including resistivity, magnetics, and gravity meters, a 12-channel portable and 48-channel, truck-mounted seismic system for seismic reflection and refraction studies.

The Rock Mechanics group has extensive facilities for conducting experiments over a wide range of conditions. The primary equipment includes: (1) a triaxial system with independent pore-pressure control, which with planned future upgrades will allow experiments in the 25° to 300°C temperature range; (2) a uniaxial testing machine configured for creep experiments up to 1600°C under controlled fugacity conditions; (3) a uniaxial testing machine configured for precision loading of small samples, and (4) a shock loading frame. All equipment is operated with a HP-7500 series computer data acquisition
and control system. The lab also has numerous fixtures and associated measuring devices to produce specific sample configurations. Additional sample preparation equipment is available within the lab including low-speed saws and polishing laps plus an ion mill for preparing SEM/TEM samples.

Research

The greatest strength of the geophysics program at IU lies in seismology. Research activities range from the theoretical work of Al Rudman in synthetic seismograms and Gary Pavlis in tomography, to Pavlis's research in the precise locations of earthquake hypocenter locations, to Michael Hamburger's work, in part with Pavlis and Haydar Al-Shukri on the tectonic significance of the distribution of earthquakes in active seismic zones. Regions of tectonic interest include the southwest Pacific, the Himalaya Mountains of central Asia, and the New Madrid seismic zone in the mid-continent, USA, where Ned Bleuer is also involved in prehistoric liquefaction studies. To these research efforts are added Rudman's and Al-Shukri's interests in potential field theory and applications, and Rudman's, Vishnu Ranganathan's and Andy Fisher's interest in conductive and convective heat transfer in the crust. Fisher also uses seafloor thermal and borehole measurements to delineate crustal structure. In ductile and brittle rheological studies, Bruce Douglas has been worked on models of upper mantle rheology, and he and Jeremy Dunning are heavily involved in experimentally investigating the effect of surfactants on stable crack propagation.

Representative Publications

Hydrogeology and Environmental Geochemistry

Research Faculty

Andrew T. Fisher
Associate Scientist, Geological Sciences and Indiana Geological Survey; B.S. Stanford; Ph.D. University of Miami, RSMAS, 1989.

Hendrik M. Haitjema
Associate Professor, Environmental Sciences and Geological Sciences; Ir. Delft University of Technology (Netherlands); Ph.D. Minnesota, 1982.

Noel C. Krothe
Associate Professor, Geological Sciences; B.S. Bloomsburg State; M.A.T. Indiana; M.S., Ph.D. Penn State, 1976.

Greg A. Olyphant
Associate Professor, Geological Sciences and Geography; B.A. Cal State; M.A., Ph.D. Iowa, 1979.

Vishnu Ranganathan
Assistant Professor, Geological Sciences; B.S. Bombay, M.S. Cincinnati; Ph.D. Louisiana State, 1988.

Jeffrey R. White
Associate Professor, Environmental Sciences and Geological Sciences; B.A. Gettysburg College, M.S. Rutgers, Ph.D. Syracuse, 1984.

Facilities

Professors Jeffrey White and Noel Krothe have laboratories for water analyses which contain a wide suite of instruments for aqueous analytical chemistry including an ion chromatograph and spectrophotometers. They also make routine use of the stable isotope and ICP laboratories maintained by the Department. Quantitative hydrogeologic research at IU benefits from two well-networked arrays of powerful workstations with sophisticated 3-D computer graphics for scientific visualization of data and for mathematical modeling, operated by Vishnu Ranganathan and Hendrick Haitjema.
Research

Research in hydrogeology and aqueous geochemistry at Indiana University deals with a large variety of issues. Large-scale groundwater flow, the estimation of fluid and solute fluxes and transport properties of rocks are investigated by Ranganathan, Haitjema and Fisher. The groundwater models are used by Haitjema in designing pumping schemes to withdraw contaminants from the subsurface. White studies the aqueous chemistry and biogeochemistry of lakes and lake sediments, while Krothe is interested in the geochemistry of groundwaters, using dyes as tracers for subsurface flow in karst terrains, and the movement of agricultural contaminants in groundwaters. Fisher makes field and laboratory measurements of heat flow and rock properties, and uses this information in large-scale models of coupled heat and fluid flow. Greg Olyphant is currently involved in a project concerning acid mine drainage, erosion and sediment transport near abandoned coal mines and the movement of water in the unsaturated zone.

Representative Publications

Igneous, Metamorphic Petrology and Geochemistry

Research Faculty

Abhijit Basu
Professor, Geological Sciences; B.Sc. Presidency College (India); M.Sc. Calcutta; Ph.D. Indiana, 1975.

James G. Brophy
Associate Professor, Geological Sciences; B.A. Antherst; M.Sc. Colorado School of Mines; Ph.D. Johns Hopkins, 1985.

Michael J. Dorais
Assistant Scientist, Geological Sciences; B.S. Brigham Young; M.S. Oregon; Ph.D. Georgia, 1987.

Peter J. Ortoleva
Professor, Chemistry and Geological Sciences; B.S. Rensselaer Polytechnic Institute; Ph.D. Cornell, 1970.

Enrique Merino
Associate Professor, Geological Sciences; Ingeniero, School of Mining Engineering, Madrid, Spain; Ph.D. University of California at Berkeley, 1973.

Edward M. Ripley
Professor, Geological Sciences; B.S. Illinois State, M.S. Minnesota; Ph.D. Penn State, 1976.

David G. Towell
Associate Professor, Geological Sciences; B.S. Penn State, Ph.D. M.I.T., 1963.

Charles J. Vitaliano
Professor (ret.), Geological Sciences; B.S., College of the City of New York, M.A., Ph.D. Columbia University, 1944.

Robert P. Wintsch
Professor, Geological Sciences; B.A. Beloit; Ph.D. Brown, 1975.

Facilities

Most analytical facilities necessary to conduct our research are available in-house, and we have access to other equipment through collaboration. Mike Dorais maintains our microprobe and x-ray facility, which includes a state-of-the-art, fully automated (Cameca SX50) electron microprobe, as well as automated and manual x-ray diffractometers. Mark Gilstrap runs our analytical facility with inductively coupled plasma (ICP) and atomic absorption (AA) spectrometers for major and trace element analysis. Jim Brophy has several controlled-atmosphere, high temperature furnaces for experimental studies. Steve Studley supervises use of the stable isotope laboratory for analysis of H, C, N, O, and S isotopes, while Ed Ripley maintains all the necessary mineral and silicate extraction lines. We also have a rock prep lab, machine shop, and electronics shop. We collaborate with scientists at Woods Hole, and the USGS (Reston, Denver) for research using ion microprobes and radiogenic isotopes for geochronology.
Research

Research in hard rock petrology and geochemistry covers a wide range of problems and issues at IU. Brophy, Dorais, Merino, Ripley, and Vitaliano all study aspects of igneous petrology. Brophy's and Vitaliano's research focuses on extrusive rocks to understand the operation of magma chambers, while Basu looks at lunar soils to extract both subsurface igneous and surficial soil-forming processes. Dorais and Ripley study intrusive rocks, felsic and mafic respectively, to decipher issues of magma mixing and ore genesis and Merino analyzes the kinetics of crystallization. Basu, Brophy, Dorais, and Dave Towell all use trace and rare earth elemental geochemistry in their research, with Brophy actively involved in high temperature, low pressure experiments looking at the partition of trace elements among minerals and silicate liquid. Ripley, Wintsch and Ortoleva examine metamorphic rocks from different perspectives. Ripley's interests focus on silicate-sulfide interactions in diagenesis and metamorphism. Wintsch uses methods of metamorphic petrology, whole rock geochemistry, structural geology, and geochronology to unravel suspect terranes in the Appalachians, and to understand petrologic processes in staly cleavage development and in brittle and ductile fault zones. Ortoleva explores theoretical aspects of pressure solution and fabric development in metamorphic rocks.

Representative Publications

Quaternary Geology and Geomorphology

Research Faculty

Ned K. Bleuer
Associate Scientist, Indiana Geological Survey and Assistant Professor, part time, Geological Sciences; B.S. Wisconsin, M.S. Illinois, Ph.D. Wisconsin, 1971.

Gordon S. Fraser
Senior Scientist, Indiana Geological Survey and Associate Professor, part-time, Geological Sciences; B.S., M.S., Ph.D. Illinois, 1974.

Greg A. Olyphant
Associate Professor, Geological Sciences and Geography; B.A. Cal State; M.A., Ph.D. Iowa, 1979.

Lawrence J. Onesti
Associate Professor, Geological Sciences; B.S. Northwestern; M.A. Michigan State; Ph.D. Wisconsin, 1973.

Facilities

Laboratories for detailed analyses of soils and unconsolidated sediments are available in the Department and Survey. Available field equipment includes a Giddings soil corer, a truck-mounted auger for drilling unconsolidated materials, and portable gamma-ray and neutron logging devices. Instrumentation is available for field studies of wind, streamflow, and sediment transport. The Department also has a machine shop for construction of custom equipment and installations used for monitoring surficial processes.
Research

Research in Quaternary geology and geomorphology by I.U. faculty and research associates in the Indiana Geological Survey includes studies of contemporary erosional and depositional processes as well as local and regional studies of depositional environments and glacial land-systems. A special emphasis is placed on environmental geology with current projects directed toward effects of tectonism on fluvial systems, development of hydrogeologic facies models for glaciated areas, erosion and sedimentation in areas affected by surface mining, and susceptibility of unconsolidated deposits to earthquake hazard. Research projects are supported by grants from the U.S. Geological Survey, National Oceanographic Association, NASA, National Science Foundation, the Environmental Protection Agency, as well as state and local agencies.

Representative Publications

Sedimentary Petrology and Geochemistry

Research Faculty

Abhijit Basu
Sedimentary Petrology, Lunar Petrology and Lunar Geology
Professor, Geological Sciences; B.Sc. Presidency College (India); M.Sc. Calcutta; Ph.D. Indiana, 1975.

J. Robert Dodd
Paleoecology, Carbonate Sedimentology and Petrology
Professor, Geological Sciences; B.A. Indiana; M.A., Ph.D. Caltech, 1961.

Donald E. Hattin
Stratigraphy, Sedimentology, Paleontology and Paleontology. Carbonate Petrology
Professor, Geology; B.S. Massachusetts; M.S., Ph.D. Kansas, 1954.

Colin Harvey
Economic Geology, Clays and Industrial Minerals, Sedimentary Petrology, Geothermal Research Fellow, Geological Sciences; B.Sc., M.Sc. (Honors) University of Auckland, New Zealand, Ph.D. Indiana, 1980.

Alan S. Horowitz
Geobiology, Paleontology, Carbonate Petrology
Senior Scientist and Professor, part-time, Geological Sciences; B.A. Washington and Lee; M.S. Ohio State; Ph.D. Indiana, 1957.

Enrique Merino
Geochemistry and Petrology
Associate Professor, Geological Sciences; Ingeniero, School of Mining Engineering, Madrid, Spain; Ph.D. University of California at Berkeley, 1973.

Haydn H. Murray
Economic Geology, Clays and Industrial Minerals
Professor, Geological Sciences; B.S., M.S., Ph.D. Illinois, 1951.

Peter J. Ortoleva
Geochemistry, Kinetics and Transport Mechanisms, Basin Analysis
Professor, Chemistry and Geological Sciences; B.S. Rensselaer Polytechnic Institute; Ph.D. Cornell, 1970.

Lisa M. Pratt
Sedimentary and Organic Geochemistry, Stratigraphy
Associate Professor, Geological Sciences; B.A., M.S. North Carolina; M.S. Illinois; Ph.D. Princeton, 1981.

Edward M. Ripley
Petrology of Metallic Ore Deposits, Isotopic Geochemistry
Professor, Geological Sciences; B.S. Illinois State, M.S. Minnesota; Ph.D. Penn State, 1976.

Lee J. Suttner
Sedimentary Petrology, Basin Analysis, Sedimentology
Professor and Chairman, Geological Sciences; B.S. Notre Dame; M.S., Ph.D. Wisconsin, 1966.

Robert P. Wintsch
Metamorphic, Sedimentary Petrology, Structure, Tectonics, Geochronology
Professor, Geological Sciences; B.A. Beloit; Ph.D. Brown, 1975.

Facilities

The department has a variety of microscopes and chemical analytical facilities that are utilized in sedimentary petrology. In addition to standard polarizing petrographic microscopes and a cathodoluminescence capabilities on three separate instruments, the faculty and students doing research in sedimentary petrology have ready access to the most advanced equipment for x-ray diffraction analysis, electron microprobe, mass spectrometers for stable isotope analysis, and ICP and AA spectrometers for analysis of waters and rocks.
Research

Petroleum of sedimentary rocks is fundamental to the understanding of the processes that range from tectonism of the earth to the interaction of the atmosphere, hydrosphere, and the biosphere with the solid earth. Low-temperature geochemical processes contribute to the modification of original sediments as well as to their preservation. More than half of the faculty of the department relate to sedimentary petrology directly or in an interdisciplinary way. Lee Suttner and Abhijit Basu work on the provenance of sand and sandstone. Colin Harvey, Enrique Merino, Haydn Murray and Ed Ripley study sedimentary petrology and diagenesis. Organic and inorganic sedimentary geochemistry is included in studies by Merino, Peter Ortoleva, Lisa Pratt, Ripley and Bob Wintsch, while Bob Dodd, Don Hattin and Al Horowitz focus on carbonate rocks. Basu also studies the petrology of lunar soils.

Representative Publications

Research Faculty

Abhijit Basu Sedimentary Petrology, Lunar Petrology and Geology
Professor, Geological Sciences; B.Sc. Presidency College (India); M.Sc. Calcutta; Ph.D. Indiana, 1975.

Simon C. Brassell Biological, Organic, and Petroleum Geochemistry; Basin Analysis
Professor, Geological Sciences and Environmental Sciences; B.Sc., Ph.D. Bristol (England), 1980.

J. Robert Dodd Paleocology, Carbonate Sedimentology and Petrology
Professor, Geological Sciences; B.A. Indiana; M.A., Ph.D. Caltech, 1961.

John Droste Stratigraphy, Subsurface Geology
Professor (ret.), Geological Sciences; B.S., M.S., Ph.D., Illinois, 1956.

Gordon S. Fraser Quaternary Geology and Geomorphology; Sedimentology and Stratigraphy
Senior Scientist, Indiana Geological Survey and Associate Professor, part-time, Geological Sciences; B.S., M.S., Ph.D. Illinois, 1974.

Lloyd C. Furer Basin Analysis, Tectonics
Associate Scientist, Indiana Geological Survey; B.S. Ohio Univ.; M.A. Wyoming; Ph.D. Wisconsin, 1966.

Donald E. Hattin Stratigraphy, Sedimentology, Paleocology and Paleontology
Professor, Geology; B.S. Massachusetts; M.S., Ph.D. Kansas, 1954.

Norman Hester Depositional Environments, Stratigraphy, Coal and Petroleum Geology
Director, Indiana Geological Survey and Professor, Geological Sciences; B.S., M.S., Ph.D. Cincinnati, 1968.

Brian D. Keith Petroleum Geology, Basin Analysis, Sedimentology and Stratigraphy
Associate Scientist, Indiana Geological Survey and Associate Professor, part-time, Geological Sciences; B.A. Amherst; M.S. Syracuse; Ph.D. Rensselaer Polytechnic Institute, 1974.

Peter J. Ortoleva Geochemistry, Kinetics and Transport Mechanisms, Basin Analysis
Professor, Chemistry and Geological Sciences; B.S. Rensselaer Polytechnic Institute; Ph.D. Cornell, 1970.

Lisa M. Pratt Sedimentary and Organic Geochemistry, Stratigraphic Interpretation
Associate Professor, Geological Sciences; B.A., M.S. North Carolina; M.S. Illinois; Ph.D. Princeton, 1981.

Vishnu Ranganathan Hydrogeology and Aqueous Geochemistry, Basin Analysis
Assistant Professor, Geological Sciences; B.S. Bombay; M.S. Cincinnati, Ph.D. Louisiana State, 1988.

Robert H. Shaver Paleobiology and Stratigraphy
Professor (ret.), Geological Sciences, B.S., M.S., Ph.D., Illinois, 1951.

Lee J. Suttner Sedimentary Petrology, Basin Analysis, Sedimentology
Professor and Chairman, Geological Sciences; B.S. Notre Dame; M.S., Ph.D. Wisconsin, 1966.

Facilities

All the standard and many specialized equipment items for study of sedimentary rocks are available in the department and survey. The extensive collection of cores and well samples and geophysical logs in the Geological Survey are a particularly valuable resource in research on the Illinois Basin and the Department has an extensive library of geophysical logs from the western interior of the U.S. Researchers working in this area have facilities such as the latest x-ray diffraction equipment, mass spectrometers for stable isotope analysis, scanning electron microscope, and electron microprobe for studying mineralogy and mineral chemistries of sedimentary rocks. The Geologic Field Station in Montana is a convenient base of operation for field work in the northern Rockies.
Research

A large number of faculty members and geologists in the Indiana Geological Survey are involved in many aspects of research in sedimentology, stratigraphy and basin analysis. Our location on the east flank of the Illinois Basin makes study of the formation, history, and depositional settings in this basin particularly convenient. Researchers in the department are studying rocks deposited in the basin as old as Proterozoic and as young as Pennsylvanian. Indeed, some of our faculty and students have studied the sedimentology of the Pleistocene sediments that blanket the northern part of the state and fill the valleys to the south. Others work on topics such as sequence stratigraphy in Cretaceous rocks of the western interior of the U.S., the relationships between tectonics and sedimentation in the Rocky Mountain foreland, Cretaceous basins in the Rocky Mountains. But geography is no limit. Our faculty and students are conducting work on sedimentology, stratigraphy and tectonics of basins of rocks around the world and even beyond. Basu and his students have studied the sedimentology of lunar sediments.

Representative Publications

Tectonics and Structural Geology

Research Faculty

Haydar Al-Shukri
Geophysics, Seismology, Geotomography
Research Associate, Geological Sciences; B.S., M.S. Baghdad University, Ph.D. St. Louis University, 1990.

Bruce J. Douglas
Tectonics and Structural Geology

Lloyd C. Furer
Basin Analysis, Tectonics
Associate Scientist, Indiana Geological Survey; B.S. Ohio University; M.A. Wyoming; Ph.D. Wisconsin, 1966.

Michael W. Hamburger
Geophysics, Seismology, Tectonics
Assistant Professor, Geological Sciences; B.A. Wesleyan; M.Sc., Ph.D. Cornell, 1986.

Peter J. Ortoleva
Geochemistry, Kinetics and Transport Mechanisms, Basin Analysis
Professor, Chemistry and Geological Sciences; B.S. Rensselaer Polytechnic Institute; Ph.D. Cornell, 1970.

Gary L. Pavlis
Sedimentary Petrology, Tectonics
Associate Professor, Geological Sciences; B.S. South Dakota State; Ph.D. Washington, 1982.

Lee J. Suttner
Sedimentary Petrology, Basin Analysis, Sedimentology
Professor and Chairman, Geological Sciences; B.S. Notre Dame; M.S., Ph.D. Wisconsin, 1966.

Robert P. Wintsch
Metamorphic, Sedimentary Petrology, Structure, Tectonics, Geochronology
Associate Professor, Geological Sciences; B.A. Beloit; Ph.D. Brown, 1975.

Facilities

The facilities needed for this research are more than adequate, including extensive computing facilities and state-of-the-art electron microscopic and microanalytical tools. Most analytical facilities necessary to conduct our research are available in-house, and we have access to other equipment through collaboration. Included is a fully automated Cameca SX50 electron microprobe, as well as automated and manual x-ray diffractometers, a chemical analytical facility with inductively coupled plasma (ICP) and atomic absorption (AA) spectrometers for major and trace element analysis, a stable isotope laboratory for analysis of H, C, N, O, and S isotopes, mineral and silicate extraction lines and a rock prep lab, machine shop and electronics shop. Also available for use are a cluster of Sun workstations with an extensive collection of software. There are specialized graphics facilities and unrestricted access to a number of VAX computers and a large AMDAHL mainframe, linked in a campuswide computer net.
Research

Bruce Douglas and Robert Wintsch are involved in hardrock structural problems in the northern Rockies and Appalachians from the origin of slaty cleavage, to structural analysis within and across terrane boundaries. Peter Ortoleva is interested in the origin and development of preferred mineral orientations and layering in metamorphic rocks from a theoretical point of view. Many of our faculty are involved with research related to mechanical aspects of geological deformation, and their research is cross listed here. Michael Hamburger, Gary Pavlis and Haydar Al-Shukri are conducting seismologic research in areas of active tectonics including the Himalayan mountain system, the subduction environment of the southern Pacific, and the New Madrid fault zone of the central United States. Lloyd Furer is working on intracratonic tectonic problems in the northern Cordillera and the midcontinent from a stratigraphic approach. Lee Suttner is working on tectonic problems in the Cordillera using sedimentology, stratigraphy and provenance as primary tools.

Representative Publications

Haydar Al-Shukri

Research Associate, Geological Sciences; B.S., M.S. Baghdad University, Ph.D. St. Louis University, 1990.

Al-Shukri's major research field is earthquake seismology with special interests in geotomography using seismic and potential field data to view the earth heterogeneities in three dimensions. He has developed and applied a number of tomographic procedures to examine crustal and upper mantle velocity and attenuation structures beneath the New Madrid seismic zone and surrounding regions. One of the main objectives was to study the association between seismic wave velocity, attenuation and pore-fluids. This research was conducted to examine the existence of fluids in the fault zone and their effects in reducing the deviatoric stress necessary to generate earthquakes.

More recently, through his association with IRIS (Incorporated Research Institutions for Seismology) he has broadened and diversified his research area to include analysis of 3-

Map of the northern Mississippi Embayment (shaded) and surrounding tectonic features (modified from Heyl and McKeown, 1978). Circles denote some of the earthquake epicenters located by the U.S. Geological Survey/Nuclear Regulatory Commission. The solid rectangle delineates the area beneath which the three-dimensional velocity structure has been studied.

Velocity variations contoured at 0.1 km/sec intervals for the upper crust (0-14 km) beneath the most active portion of the New Madrid seismic zone (see figure at right). The circles denote epicenters of well-located earthquakes determined between 1980 and 1986.
component broad band data from small and large aperture seismic arrays to study near-surface station site effects on the high frequency waves, source characteristics, path effects, shear wave splitting, and anisotropy. Another area of research is the development of a new approach of inverting potential field data to determine three-dimensional distribution of density and susceptibility in the earth.

Q'_i values ($\times 10^5$) determined for several selected paths beneath the high seismicity region of the New Madrid area. This figure indicates that the most seismically active areas (shaded) attenuate seismic waves much faster than the surrounding regions. The results shown in this figure and the reduction of seismic wave velocities are consistent with the idea that fluid-filled cracks are prevalent in the active portion of the New Madrid seismic zone.

Representative Publications

Abhijit Basu Sedimentary Petrology, Lunar Petrology and Geology
Professor, Geological Sciences; B.Sc. Presidency College (India); M.Sc. Calcutta; Ph.D. Indiana, 1975.

Basu attempts to better understand the petrological evolution of the crust, especially the surficial material, of the earth and the moon. Properties of such material are functions of provenance, weathering, transport, deposition, and diagenesis. Therefore, understanding the processes that affect any of these variables is a prerequisite. A student may expect to conduct quantitative provenance studies of sands and sandstones of the earth and the regolith of the moon if s/he works with Basu. The ultimate goal is to reconstruct the geology of the part of a planetary crust that has been eroded to give rise to a body of sediment. Principally these studies have centered around the determination of petrologic, structural, and chemical properties of detrital minerals and rock-fragments; and, relating these properties through mass-balance to infer the proportions of source rock contribution to bodies of sands, sandstones, and the lunar regolith through time. A second major area of research is focused on the evolution of the lunar regolith. Processes that are responsible for the production, evolution, and growth of agglutinates are investigated by studying the properties and distribution of agglutinates in lunar soils of various compositions, maturities, and geologic contexts.

Apart from quantitative provenance analysis, Basu is modelling toxic metal pollution in the Venice lagoon to identify dispersal patterns and possible clean up pathways. He is also participating in extraterrestrial remote sensing research to provide a mineralogical-petrological calibration of spectral reflectance investigation of asteroids.

Basu is currently collaborating with E. Molinaroli (University of Venice, Italy), R. Cullers (Kansas State University), L. Melim (University of Miami), D. S. McKay (NASA), Carle Pieters (Brown University), G.G. Zuffa and Elena Spadafora (University of Bologna, Italy), and R. Valloni (University of Parma, Italy). Basu’s research is supported by NASA.

Representative Publications
Ned K. Bleuer
Quaternary Geology and Geomorphology

Associate Scientist, Indiana Geological Survey and Assistant Professor, part-time, Geological Sciences; B.S. Wisconsin, M.S. Illinois; Ph.D. Wisconsin, 1971.

Bleuer studies glacial geology, stratigraphy and has a special interest in geomorphology and stratigraphy of glacial and Quaternary deposits in Indiana. To better define and characterize geomorphology, Bleuer uses airphoto and satellite imagery. Field-based stratigraphic studies are aided by Indiana Geological Survey supported drilling and logging in more complicated areas. He then applies this stratigraphic information to hydrologic and environmental problems. The disruption of soil and fluvial sedimentary structures representing liquefaction features are also applied to seismicity, especially in southern Indiana.

Generalized longitudinal cross section of the Marion valley plug, the Blackford Member, showing relations and nomenclature of the independent, dam-separated, lake deposits of Indiana and Ohio. Till deposits representing ice dams related to each lake deposit mark the positions of disconformable cutout and inset relations are present within the Blackford Member, and especially along the Valley rim unconformity between these Illinoian and overlying Wisconsinian deposits.

Representative Publications

Simon C. Brassell
Biological, Organic and Petroleum Geochemistry; Basin Analysis
Professor, Geological Sciences and Professor, part-time, Environmental Sciences; B.Sc., Ph.D. Bristol, 1980.

My research interests encompass the biological origins and geological fate of organic matter, including studies of molecules as signals of climatic and environmental change in the sedimentary record and aspects of petroleum geochemistry. Three themes illustrate the approach and scope of these research areas. They all depend on the application of several analytical methods, especially gas chromatography-mass spectrometry which provides the selectivity and sensitivity to identify and quantify individual components within the complex mixtures that typify geological samples.

Molecular Signals of Global Climate Change.
The sedimentary distributions of organic molecules include markers that are diagnostic of their biological source and record their fate since deposition. Thus, sediments preserve signals of biogeochemical processes that can be unraveled and applied in environmental and climatic interpretations. Molecular profiles also record changes in plankton productivity and variations in oceanic surface water temperatures as illustrated by three separate studies. First, sediment records from the Japan Sea have been shown to provide signals of long-term climatic fluctuations through glacial/interglacial cycles which parallel and augment changes characterized by micropaleontological measures and by oxygen isotopic profiles. Second, molecular distributions in laminated sediments offshore southern California show annual variations that record episodes of ocean warming concurrent with documented El Niño (ENSO) events through the 20th century. Third, current investigations of selected molecules, principally lipids in particulate organic matter collected at approximately three-week intervals from the waters of the Gulf of California provide direct chemical evidence of seasonal changes in productivity and in water temperatures (see figure at right).

Geological Records of Ancient Climates.
Research addressing contemporary environmental changes prompts questions related to the causes and antiquity of such phenomena; including:

(i) are the fluctuations observed today a function of the normal systematic variability/cyclicity in the Earth’s climate, or to what extent can they be attributed to man’s activities?

(ii) do present-day climate changes represent an acceleration compared to events in the geological past?
Resolution of these matters requires a continuing examination and evaluation of both recent and ancient climatic perturbations. As an extension of studies of molecular signals in sediments that record climatic variations associated with ice ages it is pertinent to explore evidence of climatic conditions during earlier episodes of Earth history. In particular, the Cretaceous is a time period when global climate was equable and when massive amounts of organic carbon were sequestered in sediments during so-called “Oceanic Anoxic Events.” One current project involves decipherment of molecular and carbon isotopic records during these critical intervals to explore possible perturbations in the global carbon cycle. Such investigations of ancient environments adds a geological perspective to the operation, variability and fragility of the present Earth system and provides a vital baseline against which man’s influence on modern climatic fluctuations can be assessed.

Petroleum Geochemistry. A third theme in my research focuses on the processes of oil formation and the chemical characterization of petroleum. These entail studies of source rocks and petroleum and include the applications of molecular characteristics to evaluate both the origins and thermal migration history of petroleum. Investigations of the compositions of petroleum helps assess their origins and their biodegradation by microbes in reservoirs. The pervasiveness of hydrocarbons and their combustion products in modern environments stems from the burgeoning growth in their industrial usage over the past century and represents a significant anthropogenic perturbation of the global carbon cycle. Such topics also bear directly on the environmental impact of petroleum usage and on its amelioration, such as bioremediation of petroleum spillages.

Representative Publications

Brophy's primary research interests center around the chemical and physical processes involved in magmatic differentiation. His research program makes use of a wide range of techniques including geologic field mapping, petrologic and geochemical laboratory analysis (major and minor element geochemistry, electron micro-probe analysis) and fluid dynamic modeling. Over the years, Brophy and students have conducted research in several areas including the Aleutian Islands, the Cascade Mountains of western Oregon, the Basin and Range province of the western U.S. and, most recently, the East Pacific Rise. These studies, largely funded by the National Science Foundation, have considered such diverse topics as the role of subducted oceanic crust in the high-pressure formation of island arc basalt, the relative roles of lower crustal melting, magma mixing, and fractional crystallization in the formation of andesitic magma, the growth and temporal evolution of low-pressure andesitic magma chambers (figures above) and, most recently, the physical mechanisms of low-pressure fractional crystallization.

Representative Publications
Donald D. Carr

Industrial Minerals, Coal Geology

Senior Scientist, Indiana Geological Survey and Professor, part-time, Geological Sciences; B.S., M.S. Kansas State; Ph.D. Indiana, 1969.

Donald Carr is interested in the relationships of the physical and chemical properties of limestones and dolomites to their use and durability as building stones. Indiana Limestone, the commercial product produced from the Salem Limestone in south-central Indiana, has been the nation’s leading dimension limestone for more than a century, and so the building constructed with this stone afford a veritable laboratory for observing the changes in stone through time in both urban and non-urban environments.

Fluctuations in production of Indiana Limestone are reflected in the changes in economic conditions and architectural styles. The solid bearing-wall construction of earlier years required little knowledge of physical properties, but the "International Style" of architecture of later years, featuring thinner walls and more intricate connections, places new emphasis on physical properties.

Donald Carr retains a strong interest in the industrial minerals native to Indiana, such as sand and gravel, gypsum, and the materials used for crushed stone products, but he also maintains an interest in the entire field of industrial minerals. He is completing a project as senior editor for the sixth edition of *Industrial Minerals and Rocks*, to be published by the Society for Mining, Metallurgy, and Exploration in 1993.

Representative Publications

J. Robert Dodd

Paleoecology, Carbonate Sedimentology and Petrology

Professor, Geological Sciences; B.A. Indiana; M.A., Ph.D. Caltech, 1961.

For a number of years Dodd has worked with Bob Stanton of Texas A&M University on using fossils and sedimentary rocks to interpret the paleoecology and sedimentologic features of Neogene strata in the Eel River and San Joaquin Basins of California. He is also co-author of a textbook on concepts and applications of paleoecology.

Depositional processes, environments, and diagenesis of the Ste. Genevieve Limestone. The Ste. Genevieve contains several intervals of eolian carbonates and several exposure surfaces. Dodd has been investigating the origin of these eolian units, their geographic and stratigraphic distribution, and their relationship to subaerial exposure surfaces. The presence of unconformities within the section allow application of the methods of sequence stratigraphy to study of this unit. He is working on this project with Patty Merkley, a former IU student (now with Exxon), and Ralph Hunter of the USGS. Graduate students Charles Zuppman, Clay Harris, and Karl Leonard worked on an early part of this project.

Depositional processes producing the Salem Limestone and relation of petrographic features of the Salem to sedimentary structures in the unit. The Salem is well exposed in numerous quarries in the Bloomington area. The development and extensive use of a chain saw-like quarrying method has resulted in beautiful exposure of sedimentary structures. These allow a more detailed view of depositional processes than has previously been possible. Current work centers on determining the source and distribution of cements and porosity in these rocks. Dodd is working on this project with Todd Thompson of the Indiana Geological Survey and Dan Petzold of the Indiana Department of Environmental Management. The work is being supported by the Marathon Oil Company.

Depositional process producing the ooid shoals of the Ste. Genevieve Limestone. These shoals are important petroleum reservoirs in the subsurface of the Illinois Basin. Many details of their origin such as the nature of surface on which the form, rate of deposition, nature of the depositing currents, changes

A model to explain Ste. Genevieve eolianites with sea-level variation.
during their history, cause of cessation of growth, remain to be learned. A large shoal is well exposed in two quarries near Orleans, Ind. A research seminar under Dodd’s direction recently completed a preliminary study of this problem. Graduate students Clay Harris, Karl Leonard, and Charles Zuppan have also worked with him on this project. More work needs to be done to follow up the tentative findings of this project.

Dodd investigates the petrology and the diagenesis of carbonate rocks to understand processes and environmental conditions leading to their deposition. Specifically, he studies optical, luminescence, and SEM petrographic, and, oxygen and carbon isotopic properties of these rocks to attain these goals. A major part of his petrologic research is carried out on the Mississippian rocks of southern Indiana and neighboring states and is supported from industrial grants.

Representative Publications

Publication resulting from research seminar.
Dorais' research focuses on chemical and physical processes of magmatic differentiation through combined field and laboratory investigations of both intrusive and extrusive igneous rocks. A major strategy is to utilize the textural, chemical, and mineralogic characteristics of mafic igneous inclusions as a window into otherwise inaccessible subsurface magmatic processes. In particular, such inclusions provide important insights into the compositional nature of liquid lines of descent in plutonic igneous rocks, and represent a key to understanding the complexity of natural differentiation processes.

An additional area of interest is the application of ion-probe analytical techniques to the determination of trace element abundances in major and accessory igneous minerals. Field-based investigations have included studies in the San Juan Mountains of Colorado, the Sierra Nevada Batholith and the White Mountain Magma Series of New Hampshire. Dorais' research is funded by the National Science Foundation.

Representative Publications

Bruce Douglas

Tectonics and Structural Geology

At the present time Douglas is engaged in several laboratory and field based projects. All of these projects emphasize combining either theoretical or experimental data with field/natural, site-specific data. The underlying theme that permeates most of the research is understanding the deformation mechanisms that control geologic phenomena.

Several laboratory studies (design to right) are in progress documenting the role of subcritical crack propagation during the brittle failure of geologic materials. One study involves the propagation of cracks in various chemical environments. A second study involves the fracture propagation in shales under conditions of hydrocarbon maturation. A third study is directed at computationally modelling fault/fracture propagation with applications for compound earthquakes, regional joint sets, and thrust fault propagations in active fold and thrust belts.

A number of field studies are centered in southwestern Montana. One involves studies of the deformational mechanisms of the metamorphic basement rocks in the Tobacco Root Mountains. A second study involves mapping and balanced cross section work to determine the partitioning of displacement transfer between thrust systems for a transect of the Cordilleran Thrust Belt (see figure to right). A regional, tectonic project is also in progress investigating the rheological properties of the South American lithosphere above a 1,000 km portion of the Chile Trench.

Representative Publications

John B. Droste
Professor (ret.), Geological Sciences; B.S., M.S., Ph.D. Illinois, 1956.

For several decades Droste's research has treated the subsurface geology of the Paleozoic rocks of Indiana and adjacent states. These studies are focused on lithostratigraphy, on interpretation of environments of deposition, and on local and regional tectonic events as they relate to petroleum geology.

Map showing the physiographic regions in Indiana about 325 million years ago. The long and moderately straight ridges and valleys of the Rockville Ridges, named for Rockville in Parke County, were the area of carbonate outcrops of the Sanders Group and Blue River Group. Long, straight valleys lay between prominent long, straight ridges. The well control in this area is good, and details of topography are well documented. In numerous places the ridgetops that lay 2-3 miles apart were capped by Ste. Genevieve Limestone and stood as much as 200 feet above valley bottom land floored by the middle part of the Salem Limestone.

Representative Publications
Jeremy Dunning
Associate Professor, Geological Sciences and Associate Professor, part-time, Environmental Sciences; B.A. Colgate; M.S. Rutgers; Ph.D. North Carolina, 1978.

Dunning's research examines the role of aqueous environments in stress corrosion (chemical weakening) of geologic materials. Typical research projects include stable crack propagation, fault mechanics stick-slip experiments, and hydraulic fracturing. Research applications include the role of chemistry in the stability of highly stressed rocks and fault asperities. The lab facilities available include a rock mechanics laboratory containing two mechanical loading frames of 1000 and 20,000 lb. capacity, a 225-ton hydraulic loading frame equipped with a pressure vessel with 60,000 psi confining and pore pressure capabilities, and complete sample preparation capability.

Representative Publications
Andrew T. Fisher
Heat Flow, Borehole Geophysics, Crustal Structure
Associate Scientist, Geological Sciences and Indiana Geological Survey; B.S. Stanford; Ph.D. University of Miami, RSMAS, 1989.

Fisher combines laboratory and field measurements of rock properties (permeability, thermal conductivity, consolidation characteristics) with analytical and numerical models in an attempt 1) to understand the extent, intensity, and timing of coupled flow processes, and 2) to elucidate crustal structure.

Off-axis hydrothermal systems: One of Fisher's active projects involves a study of the importance of seafloor bathymetry, basement relief, heat flow, and permeability distribution within sediments and volcanic rocks on off-axis hydrothermal circulation. The overall goal is to develop an explanation for the observed patterns of crustal alteration and the change in seismic velocities of the upper crust as oceanic lithosphere moves away from the ridge axis. This work has involved collection of field data, compilation and review of previously collected field measurements, laboratory tests of crustal properties, and the application of numerical models of coupled heat and fluid flow to simulate a section of crust. These models have replicated a variety of disparate field observations, including variations in fluid pressure with

This figure illustrates a result from a numerical simulation of off-axis hydrothermal circulation. The model represents a 10-km-wide, two-dimensional cross-section of the upper crust, oriented perpendicular to the ridge crest. This crustal section was simulated using a novel curvilinear mesh design. This crustal section has four distinct layers: the shallowest layer is sediments whose properties vary with depth, while the deeper layers are different types of basalt. Variations in seafloor elevation represent the influence of abyssal hills. The figure shows fluid flow vectors predicted by the numerical model. Note the extreme vertical exaggeration.
depth below the seafloor, correlations between seafloor heat flow and crustal structure, and vertical and lateral fluid flow through both sediments and basement. Additional modeling has revealed the quantitative importance of various parameters in controlling off-axis hydrothermal fluid circulation, and suggests that isolated, sub-horizontal conduits of highly permeable basalt (perhaps ≤10-20 m thick) are responsible for a widely-observed positive correlation between seafloor heat flow and basement relief.

Hydrogeology of Sedimented Spreading Centers: Fisher has conducted several studies of hydrogeological properties and processes at seafloor spreading centers, with work in Guaymas Basin, central Gulf of California, and Middle Valley, northern Juan de Fuca Ridge. These spreading centers are unusual in that they are heavily sedimented, allowing easy penetration of heat flow, coring, and other instrumentation. These systems are subject to the same magmatic and thermal budgetary limitations as more conventional spreading centers, and may also be characteristic of early rifting stages at many passive margins, even those that eventually form more ‘normal’ crust. Sedimented hydrothermal systems also often host economically important sulfide deposits. Studies in Guaymas Basin have included an assessment of the thermal budget of and architecture of crustal formation, and numerical models of hydrothermal processes following intrusion of basaltic sills. Work at Middle Valley, following participation on Ocean Drilling Project Leg 139, has included a laboratory assessment of permeability and geotechnical properties of sediments, and their relationship to index properties, grain-size, and thermal state; and an overview of the Middle Valley hydrothermal systems. Fisher is also Principal Investigator on a proposal to return to Middle Valley to conduct fine-scale studies of hydrogeology around and within hydrothermal mounds, with the primary survey work to be conducted in the summer of 1995.

Heat and Fluid Flow in Accretionary Systems: When one piece of lithosphere is subducted beneath another, a large pile of sediments and rock is often scraped off, forming an accretionary complex or wedge. The islands of Barbados and Taiwan, for example, are the tips of accretionary wedges in the north Atlantic and western Pacific Oceans. As subduction continues the wedge is squeezed and deformed, and fluid is expelled from deep within its structure. Fisher participated on several expeditions to investigate the nature of this fluid flow in active accretionary systems (Barbados, Cascadia, and Nankai Trough), and the coupling between deformation of the wedge and the timing, duration, and extent of dewatering. Fisher will be returning to the Barbados complex in the spring of 1994 to collect thermal and other geophysical data, and to emplace several long-term observatories to monitor thermal and pressure within the complex for several years.

Representative Publications
Gordon S. Fraser
Quaternary Geology and Geomorphology, Sedimentology and Stratigraphy
Senior Scientist, Indiana Geological Survey and Associate Professor, part-time, Geological Sciences; B.S., M.S., Ph.D. Illinois, 1974.

Fraser's work is in geomorphology and environmental geology with emphasis on application of facies of Quaternary depositional sequences to environmental problems. Recent research focuses various aspects of proglacial sedimentation, glacial depositional processes in stagnating ice sheets, sedimentological effects of catastrophic flow in river valleys, and Holocene paleoclimatology in the Great Lakes region. Future research includes study of the impact of neotectonism on fluvial systems.

Fraser also studies sedimentology with special emphasis on the analysis of the physical processes involved in the formation of depositional sequences. Recent research focuses on fluvial and coastal sedimentary processes, effect of geomorphological processes on deposition of stratigraphic sequences, and effects of topography on sedimentation during transgressions. Future research will include the analysis of tidal sequences to determine the history of lunar orbital mechanics, and analysis of the effects of drainage basin dynamics in uplifted areas on stratigraphy and sedimentation in adjacent depositional basins.

Representative Publications
Kvale, E.P., G.S. Fraser et al. (in press). Paleoseasonality as indicated by small-scale tidal bundles. Geology.
Lloyd Furer

Associate Scientist, Indiana Geological Survey; B.S. Ohio University; M.A. Wyoming; Ph.D. Wisconsin, 1966.

Furer is involved jointly with Lee Suttner in study of Cretaceous fluvial systems in the Rocky Mountain foreland basin and is primarily responsible for coordinating all subsurface aspects of the study. He has over 25 years of experience in subsurface stratigraphic studies of a variety of continental-margin basins in California and Alaska and interior basins of the western U.S. and Canada during his employment in the petroleum industry. Since joining the Indiana Geological Survey in 1988, he has also developed and continues to refine models linking recurrent movement of high-angle faults in basement rocks both to the location of Silurian reefs and Pennsylvanian coastal-plain rivers located along the margins of the Illinois Basin. Furer is involved in cooperative regional stratigraphic and structural evaluations of the Illinois Basin with the neighboring State Geological Surveys in order to develop a better understanding of the factors that influence sedimentation in an intracratonic basin. Funding for this work is provided by industry and government sources.

Cross section showing basement structure and the east continental rift basin in southeastern Indiana and southwestern Ohio. (from Furer, in review)

Representative Publications

Hendrik Haitjema

Hydrogeology and Groundwater Modelling

Associate Professor, Environmental Sciences and Associate Professor, part-time, Geological Sciences; Ir. Delft University of Technology (Netherlands); Ph.D. Minnesota, 1982.

The research group focuses on the development and application of groundwater flow models, which use a rather new modeling technique: the analytic element method.

Conjunctive Surface/Groundwater Modeling. Regional groundwater movement is composed of infiltrating rainwater which eventually finds its way to surface waters. Traditionally, when modeling groundwater, surface water bodies (streams, lakes, etc.) are merely seen as "boundary conditions" on the groundwater elevation. It is now possible to predict the groundwater inflow rates into the streams, in order to compare it to observed "base flows" in the streams. By integrating this stream flow analysis in the models Haitjema's group is developing a more coupled surface water-groundwater modeling technique.

Three-Dimensional Flow Modeling. Most saturated flow models, particularly when applied on a regional scale, deal with horizontal flow only. When modeling groundwater flow on a local scale, however, a complete three-dimensional solution may be needed. Haitjema is developing three-dimensional solutions with several features. For example, he is including partially penetrating wells in a horizontal flow model. The resulting model is very efficient, modeling three-dimensional flow locally (near the well), while treating the regional flow as horizontal.

Groundwater Response to Global Climate Change. Haitjema is currently studying the range of effects climate change may have on regional groundwater flow. The project, funded by the U.S. Department of Energy's National Institute for Global Environmental Change (NIGEC), is designed to provide information about the sensitivity of the groundwater resource to geographically large-scale changes in recharge. The anticipated changes in recharge and the modeling experiments are on an unprecedented scale, including the entire northern half of the state of Indiana, as well as parts of Illinois, Michigan and Ohio. The objectives include an assessment of groundwater levels, and of groundwater availability both regionally and locally.

Representative Publications

Michael Hamburger’s major research interests are in seismotectonics, earthquake prediction, and application of satellite geodetic measurements to geodynamic problems. He currently has active research programs in the subduction zone environments of the Southwest Pacific (Fiji-Tonga region) and the Philippines, as well as in zones of continental collision in the Pamir-Tien Shan mountain region of Central Asia and the Caucasus mountains of southwestern Asia. Several major field research projects are based in the former USSR. They include: (1) analysis of earthquake distribution, velocity structure, and focal mechanisms in the Pamir-Tien Shan region (Tadjikistan); (2) study of deep earthquakes and mantle velocity structure associated with the Pamir-Hindu Kush deep seismic zone; (3) a project to analyze structural geology, stratigraphy, and active deformation in the Pamir-Tien Shan region (in collaboration with Professor Terry Pavlis of the University of New Orleans); (4) establishment of a new, state-of-the-art digital, broadband seismic network, designed for earthquake prediction and nuclear test monitoring studies in Kyrgyzstan; and (5) two new projects to apply new satellite geodetic techniques (the Global Positioning System) for geodynamic measurements in the Caucasus Mountains (Soviet Georgia and Armenia) and in Central Asia (in collaboration with MIT’s Robert Reilinger, Brad Hager and Peter Molnar).

Regional geology and seismicity of the Pamir-Tien Shan area, Tadjikistan. This panel shows geologic structure of the region. This frame shows the Tadjik Depression sedimentary basin is intensely deformed by convergence between the Pamir and Tien Shan ranges. Rectangle shows the area of detailed seismotectonic studies, in the vicinity of the Soviet earthquake prediction laboratory near Garm, Tadjikistan.
This frame (approximately same area as tectonic map, previous page) shows earthquake locations, from the Soviet Central Asia regional seismic network, 1964-1980. Shallow earthquakes (depth ≤70 km) are shown by open circles; deep earthquakes (depth ≥70 km) by filled circles. Small symbols represent events with magnitudes ≤4.0; large symbols, M>4.0.

Representative Publications
Colin Harvey
Economic Geology, Clays and Industrial Minerals

Revised Fellow: Geological Sciences; B.Sc., M.Sc. (Honors) University of Auckland, New Zealand. Ph.D. Indiana, 1980.

Harvey's research interests extend from the application of clay minerals in industrial processes — to the study of clay minerals as the alteration products in active and fossil hydrothermal systems and — more recently on the use of mixed-layer clays as mineral geothermometers in hydrothermal systems and sedimentary basins.

Current projects include:
(a) Collaborative studies with the Geothermal Institute in New Zealand into the alteration mineral assemblages and alteration processes in the Wairakei hydrothermal system, with specific attention to the use of mixed-layer clays as geothermometers.
(b) Mineralogical studies of weathering and/or low temperature hydrothermal alteration of granodiorites in British Columbia, Canada.
(c) Resource evaluations of weathering and/or low temperature hydrothermal kaolins in the Republic of Indonesia.

Representative publications
Donald Hattin
Stratigraphy, Sedimentology, Paleoecology and Paleontology
Professor, Geology; B.S. Massachusetts; M.S., Ph.D. Kansas, 1954.

Hattin's work is in paleoecological studies of Upper Cretaceous benthic organisms, especially including oysters, cirripeds, and rudists. He also does taxonomic studies of Upper Cretaceous benthic organisms, including oysters, anomoids, and cirripeds.

In addition he studies Cretaceous stratigraphy of the Western Interior Basin, with emphasis on depositional environments, cyclicity, basinwide correlation of carbonate-rock intervals, and stratigraphic manifestations of contemporaneous tectonic uplift.

Representative Publications

John M. Hayes
Biological, Organic and Petroleum Geochemistry

Distinguished Professor, Geological Sciences, Chemistry and Adjunct Professor, Environmental Sciences; B.S. Iowa State; Ph.D. M.I.T., 1966.

Hayes and his students and postdoctoral associates study the cycling of carbon in ancient and modern environments: the isotopic biogeochemistry of carbon, hydrogen, and nitrogen; and techniques of isotopic analysis.

Techniques of compound-specific isotopic analysis are being applied to the study of biogeochemical processes in ancient depositional environments. Numerous investigations have now demonstrated the power of this line of inquiry, which allows recognition of pathways of carbon flow in ancient depositional environments. Specifically, the presence of diverse producer organisms can often be recognized and their environments of growth estimated (e.g. high in the water column vs. near the base of the photic zone).

The complexity of ancient food chains can be observed and, most notably, processes associated with anaerobic, microbial reworking of organic matter dissected. This point is of special interest because it is these anaerobic which lie at the key branch point in the carbon cycle, committing C either to burial or to continued residence in the surface environments.

As work on compound-specific isotopic investigations of ancient systems has proceeded, an information gap has become clearly evident. Although isotopic compositions of numerous individual compounds are becoming known for paleoecosystems, there have been no parallel examinations of modern systems. Because interpretations of compound-specific isotopic compositions cannot refined until such information is available, a major field program has now been undertaken in collaboration with oceanographic experts (S.G. Wakeham and colleagues, Skidaway Institute of Oceanography). Isotopic compositions of lipids from particulate organic carbon recovered from a range of depths in the water column of the Santa Monica Basin, offshore southern California, are being determined in the course of an annual cycle of cruises. Results are developing nicely and reveal that much of the isotopically significant reworking of primary products is taking place within the marine water column rather than in sediments.

Representative Publications

Horowitz's general interests are in Mississippian paleontology and stratigraphy, but he works on the systematics of Paleozoic bryozoans and blastoids. Both fossil groups have a long history of study at Indiana University extending to the beginning of the century and both groups are well represented in the Paleozoic section exposed in Indiana and adjacent states.

He is currently investigating the diversity, extinction and taxonomy of some Mississippian bryozoans and blastoids. The bryozoan studies have been a collaborative effort with J.F. Pachut of Indiana University-Purdue University at Indianapolis. Recent analysis of the extinction of Devonian bryozoans using a bootstrap statistical procedure indicates that bryozoan extinctions across the Givetian-Frasnian Devonian stage boundary are highly significant and qualify as a mass extinction. An analysis of the fossil record of the recent bryozoan fauna suggests bryozoans, based on current information, have a much poorer fossil record than that of molluscs. Compilations of Mesozoic and Cenozoic bryozoans are underway in order to evaluate bryozoan extinctions during these eras.

Representative Publications
Jasper and coworkers employ molecular and isotopic geochemistry to reconstruct levels of marine dissolved CO$_2$ and atmospheric CO$_2$ partial pressure.

Cooperative research projects with John Hayes in “CO$_2$ paleobarometry” have developed from earlier work of Popp et al. (1989) which summarized evidence that the abundance of 13C in marine organic matter should vary with the dissolved CO$_2$ concentration in photic-zone water. In a study of organic materials from the Gulf of Mexico, Jasper and Hayes (1990) showed that, for the past 100,000 years, variations in the abundance of 13C in compounds derived from coccolithophorid algae (alkenones) are well correlated with changes in atmospheric pCO$_2$ known from analyses of the Vostok ice core. More recently, based on relationships between CO$_2$ levels and isotopic compositions of gross photosynthate, Freeman and Hayes (in press) have developed new estimates of variations in paleoatmospheric CO$_2$ levels during the past 160 million years.

Current research includes CO$_2$ reconstructions in the late Quaternary on the timescales of glacial-interglacial climatic variations and of the Industrial Revolution. The goals of these investigations are to reconstruct high resolution ~255,000-year records of dissolved CO$_2$ and equilibrium pCO$_2$ levels in oceanic surface waters that were expected to have (1) remained near air-sea equilibrium, and (2) been removed from air-sea equilibrium by the balance of processes affecting dissolved CO$_2$. A sediment core from the central equatorial Pacific provided an opportunity to investigate a “non-equilibrium” environment. Isotopic analyses of a time-series record of alkenones indicate that the climatically-varying balance of physical and biological processes attenuates the subsurface eutrophic layer’s CO$_2$ levels relative to paleoatmospheric levels (Jasper et al., 1992). In an analogous study on a core from the Feni Drift in the northeast Atlantic, oceanic and atmospheric CO$_2$ levels will be reconstructed in a high latitude, near-equilibrium environment. Secondary projects include examination of ~200 year records of the effects of dissolved CO$_2$ on organic biomarker biosynthesis in marginal sea environments (the Black Sea and the Gulf of California) and a preliminary map of glacial-to-interglacial pCO$_2$ variations in the equatorial Pacific (Jasper et al., 1991). The examination of relatively short records of 13C abundance and CO$_2$ levels give further insight into the processes recorded in more ancient records. Understanding the environmental and biosynthetic factors bearing upon the carbon isotopic composition of organic compounds will continue to be an area of inquiry.

Representative Publications

Brian Keith

Petroleum Geology, Basin Analysis, Sedimentology and Stratigraphy

Associate Scientist, Indiana Geological Survey and Associate Professor, part-time, Geological Sciences. B.A. Amherst, M.S. Syracuse, Ph.D. Rensselaer Polytechnic Institute, 1974.

Keith's research involves work on a variety of local to regional-scale outcrop and subsurface studies in the Illinois basin. His primary interests are in defining the long term tectonic controls on Paleozoic carbonate facies and the application of sequence-stratigraphy concepts to interior cratonic basins. This is particularly oriented toward defining the occurrence of potential petroleum reservoirs within the basin.

A major effort is starting in the study of geologic controls over reservoir character and the potential for future exploitation in Mississippian carbonates. Some of this effort will involve cooperative studies with research personnel at the Illinois and Kentucky Surveys and with industry geologists. Considerable potential exists for graduate student research in the depositional and diagenetic history of carbonate reservoir rocks and the controls over reservoir quality.

Map showing the following: 1) percentage of the Trenton Limestone interval that is dolomite in the vicinity of the Lima-Indiana trend. The variation in thickness of dolomite in the Trenton is highly variable and complex. The percentage map is used to convey the regional pattern of this thickness distribution. 2) Distribution of oil- and gas-producing areas of the Lima-Indiana trend. 3) Nature of trapping conditions in different areas of the trend. Estimated recoveries for the different areas are fractured limestone, below commercial gas volumes; updip pinch-out, 100-500 bbl of oil/acre; anticlinal/fault controlled with solution enhancement, 4000-12,000 bbl of oil/acre; and fracture control/solution enhanced, no information available.

Representative Publications

Keith, B.D., Regional facies of the Upper Ordovician series of eastern North America, p. 1-16.
Noel Krothe specializes in the flow and chemistry of ground and surface water. His research projects utilize major and minor ion chemistry, physical flow studies, and stable isotope geochemistry. The main directions of his research center on four areas in hydrogeology:

Carbonate Hydrogeology: One of the most problematic areas of hydrogeology is flow and water chemistry in fractured and solution controlled aquifers. Normal groundwater modeling such as finite element and finite difference is difficult to apply to these problems because most significant flow does not obey Darcy's law. Field investigations utilizing organic and inorganic tracers in projects concerning the dissolution rates of carbonate rocks and the development of epikarst are ongoing. This research focuses on physical flow, epikarst storage, and macropore flow in karst terraces. Similar studies are also being conducted in other fractured rocks and in unconsolidated deposits.

Arctic Hydrology: Research concerning the formation of icings, groundwater flow, ground/sulfur water chemistry, and stream discharge has been completed in the Brooks Range of Alaska. Future studies are planned to determine dissolution rates in arctic carbonate areas.

Pollution Problems: The fate and transport of both inorganic and organic pollutants are being investigated in varied geologic settings. Problems dealing with transport of nitrogen, polychlorobiphenyls, and acid mine water are currently under investigation. Research concerning groundwater conditions in coal bearing rocks and at abandoned mine sites has been ongoing since 1978 with research grants from Argonne National Laboratories, USGS and the Office of Surface Mining. Additional support has come from the Division of Reclamation and the Indiana Department of Natural Resources through grants from the Office of Surface Mining. Abandoned coal spoils have been studied to determine the effects of acid waters and the rate of oxidation of pyritic materials in coal refuse. Groundwater in undisturbed bedrock has been characterized chemically to determine if the water is being impacted by shallower surface mining activities.

Mineral Spring Genesis: The genesis of mineral springs occurring in Southern Indiana is part of ongoing research. Stable isotopes, tritium, and water chemistry of these springs are being studied to determine their origin. Recent research indicated two possible mechanisms: evaporite dissolution or mixing of fresh water and brines.

Representative Publications

Lane continues to work on several research projects. In May he returned to China where he and two of his former students, both IU Ph.D. recipients, Johnny Waters of West Georgia College and Chris Maples of the Kansas Geological Survey, did field work in southern and northwestern China. They returned to some of the fossil localities that had been so productive in 1991 and they also visited several new Devonian localities that proved to be outstanding. They have completed a large monograph describing all of the new Devonian crinoids collected in 1991. Lane’s portion of that monograph consists of 75 pages of text, 7 photographic plates, and 23 line drawings. They intend to publish the monograph in the Paleontological Society memoir series in 1994. The new collections contain several new genera and species that were not found in 1991, so another shorter paper is currently being prepared describing this new material. In addition, they have given two poster sessions at the GSA meetings in Boston, a talk at the International Echinoderm Conference in Dijon, France, and have submitted an article on the discoveries to Geology. Important new biogeographical conclusions can be drawn from these new Devonian fossils.

In addition they discovered a new Upper Carboniferous crinoid fauna contained in extremely coarse (boulders up to 2 meters across) volcanioclastic debris flow in the Tien Shan mountains northwest of Turfan between the Tarim and Junggar Basins. This new fauna is dominated by camerae crinoids and includes typical Upper Carboniferous genera as well as ones that have a much more “Mississippian” look to them. They hope to return to Xinjiang Autonomous Region for more field work in 1995, pending receipt of additional funding. Chris, Johnny and Gary have recently submitted a new proposal to the National Science Foundation to support additional field work in China and in England in 1994-95. They plan to study the crinoids from the type Devonian of North Devon, which are predominantly Famennian in age. These crinoids have not been studied for almost 100 years, since Whidborne’s monography of 1898. In addition they hope to study Famennian specimens from Belgium and Germany in the summer of 1994 and return to China in 1995. They hope to concentrate all field activities in Xinjiang Autonomous Region in a field trip in 1995. This trip would involve return to the unusual deposits near Turfan discovered this year as

Pentremites, an extinct blastoid echinoderm from Upper Mississippian rocks of southern Indiana.
well as several other Late Paleozoic localities in the eastern part of the Autonomous Region that are supposed to contain crinoids. The current research is funded by the National Science Foundation.

Lane continues to work on unusual Silurian crinoids from the Mississinewa Shale of northeastern Indiana, near Huntington, with Bill Ausich. They have borrowed some of the extensive collections from this site held by the Geology Department at the Fort Wayne campus. In addition, Bill has collected some additional material in recent years. The fauna consists of very delicate, complete specimens with even minute plates in place, quite unlike the reef-dwelling crinoids from nearby Silurian reefs. This will be the first report of an interreef crioidal fauna from these rocks.

In addition, Bill and Gary are starting to cooperate on a study of the early history of research on living and fossil crinoids from 1546 to 1800. They are currently working on as complete a bibliography as possible and as of this writing they have approximately 202 references. In view of the fact that modern crinoid studies are typically stated to begin with a monograph by J.S. Miller in 1821 this is a remarkable literature for such early years.

Lane will retire in December 1994.

Representative Publications

Merino's general field of interest is low- and high-temperature alteration and mechanisms, combining petrological, water-chemical, kinetic, and theoretical approaches. Current research deals with working out the geochemical factors and mechanisms that produce different crystalline textures; with the igneous origin of agates; with the textures in igneous (orbicules, layering), metamorphic (spotted schists), and sedimentary (bedded cherts, banded iron formations) rocks; with the dynamics and geochemistry and diagenesis of weathering in tropical and semi-arid countries; with the geochemistry of rift-basin clastic sediments in west Africa and Connecticut; and with the physics and textural attributes of wind-blown sand.

Much of this work (funded by NSF, the Petroleum Research Fund, and the CNRS of France) is carried out in collaboration with D. Nahon (Marseille), E. Deloule (Nancy), B. Werner (Scripps, La Jolla), J.-P. Girard (Case Western Reserve), Yifeng Wang (Georgia Tech), and Vishnu Ranganathan (Bloomington).

Representative Publications

Haydn Murray

Professor, Geological Sciences; B.S., M.S., Ph.D. Illinois, 1951.

Murray's research interests focus largely on the origin, depositional environments, geochemistry, and applications of the various clay minerals. Petrology of clay and hydrothermal deposits is an integral part of this research. Determination of crystallinity and oxygen isotopic compositions of kaolinite, smectite and bauxite minerals leads to a clearer understanding of the origin of these deposits and to predictions of the occurrence and quality of economically important deposits. Researchers from many foreign countries work in Murray's laboratories, and are funded primarily by industrial grants.

Current projects are listed as follows:
A. Genesis and characterization of kaolin clays along the Rio Capim in Northern Brazil. Collaborator: Carlos Alberto Alves, Research Associate from Belem, Brazil.
B. Genesis and characterization of a white bentonite deposit near San Juan, Argentina. Collaborator:

Dr. Silvana Bertolino, Cordoba University, Argentina.

C. Geology mineralogy and physical properties of Kentucky-Tennessee ball clays. Collaborator: Jason McCuistion, Indiana University grad student.

D. Characterization and quantitative evaluation of crystalline silica in clays. Collaborator: Jean Hemzacek, Indiana University grad student.

Representative Publications
Greg A. Olyphant
Hydrogeology, Quaternary Geology and Geomorphology
Associate Professor, Geological Sciences and Geography; B.A. Cal State; Ph.D. Iowa, 1979.

Olyphant’s emphasis is on monitoring and computer modeling of surface and shallow subsurface processes. Current geomorphologic research focuses on aspects of erosion and sediment yield at abandoned strip mining sites in southwestern Indiana, and mechanics of eolian sand transport and the role of eolian processes on the sediment budget of southern Lake Michigan. Other research interests include geomorphic response to Holocene climatic changes in alpine areas and temporal and spatial dynamics of fluvial systems.

Hydrologic research consists of monitoring and computer modeling of rainfall-runoff relationships, unsaturated groundwater flow, and acid drainage in strip mined areas. He recently completed a study of hydrologic conditions in an area experiencing mine subsidence. The study focused on the hydrologic response of abandoned, flooded, underground mines to natural and human induced stresses. He has recently begun an investigation of water movement in the unsaturated zone of dune sediments and the impact of septic effluent on shallow aquifers along the southern Lake Michigan shoreline.

He has had a long-term interest in watershed hydrology, especially the role of snowmelt in the generation of runoff from mountainous areas. Recent publications on this topic have emphasized the effects of radiation and turbulent heat fluxes in the generation of snowmelt-runoff from late-lying snowfields in the Colorado Rockies.

Representative Publications
Lawrence J. Onesti
Quaternary Geology and Geomorphology
Associate Professor, Geological Sciences, B.S. Northwestern; M.A. Michigan State; Ph.D. Wisconsin, 1973.

Onesti's research is in geomorphology and Quaternary geology, with applications to environmental geology. He has particular interests in Arctic-Alpine regions, fluvial systems, snow and ice hydrology, and natural hazards. Recent research has focused on release mechanisms, debris entrainment processes, depositional environments and impact pressure of slush avalanches in the central Brooks Range, Alaska, Rana District north Norway, and Khibiny Mountains Kola Peninsula (USSR). He also studies alluvial river systems and Pleistocene depositional terrace systems response to seafloor activity in Wind River Basin, Wyoming. Finally, he is working on river channel migration history and changes in channel geometry characteristics as indicators of climatic change.

Representative Publications

Peter Ortoleva

A unified approach to the modeling of a range of phenomena from intracrystalline zoning to basin diagenesis is adopted. The emphasis is on the challenging problem of strongly coupled systems.

Oscillatory crystal zoning is predicted via a surface attachment feedback model. Oscillation is shown to be associated with a cusped nonequilibrium fractionation surface.

This research is supported by grants from the US DOE, Gas Research Institute, NSF, the EPA and the petroleum and computer industries. The Indiana University Laboratory for Computational Geochemistry under Ortoleva’s supervision provides an interdisciplinary research environment and supports about 12 students from computer science, chemistry, geology, mathematics and physics, one half being from the Department of Geological Sciences.

Models are under development for oscillatory and sector crystal zoning (figure at left), differentiated diagenetic and metamorphic layering, styloïdes, banded and mosaic agates and temporally oscillatory fluid migration in sedimentary basins.

Petroleum and mineral exploration is being facilitated by the development of a basin diagenesis code which accounts for a complete suite of mechanical, reaction and transport processes (figure below). The code is used to predict the distribution of diagenetic, structural and petroleum traps within the basin and the development of over- and under-pressures and reservoir rock. Another code focuses on the imposition of reactive fluids on a rock over geological or engineering time scales.

A sedimentary basin is shown to be rich in self-organization and other nonlinear phenomena.

Representative Publications
Gary Pavlis

Associate Professor, Geological Sciences; B.S. South Dakota State; Ph.D. Washington, 1982.

Pavlis's early work focused on geophysical inversion techniques. He has written several papers on theoretical and computational aspects of earthquake location and velocity inversion from seismic travel time data. More recently his research has broadened to include two new areas. First, through association with IRIS (Incorporated Research Institutions for Seismology) he has become involved in fundamental research in wave propagation through data collected by passive seismic arrays. His principal interest is in improving understanding of how seismic waves are scattered and attenuated within the earth and how this limits capabilities for using seismic waves radiated by earthquakes in a variety of practical problems. These practical aspects include understanding earthquake sources and detection and discrimination of underground nuclear explosions. His second current research interest is the seismotectonics of Central Asia. This interest was born through collaborations with Michael Hamburger and has yielded several recent papers.

Representative Publications
Lisa M. Pratt
Sedimentary and Organic Geochemistry, Stratigraphic Interpretation
Associate Professor, Geological Sciences, B.A., M.S. North Carolina; M.S. Illinois; Ph.D. Princeton, 1981.

Pratt and her students are involved in geochemical, stratigraphic, and sedimentologic studies of fine-grained sediments and sedimentary rocks with particular emphasis on reconstruction of paleoclimatic and paleoceanographic conditions during deposition of black shales. Recent studies have focused on strata ranging in age from the Precambrian Nonesuch Formation, Ordovician Maquoketa Shale, Cretaceous La Luna Formation, Miocene Monterey Formation, to modern sediment in Santa Monica basin, offshore California.

Concentrations and stable isotopic ratios of organic carbon and sulfide sulfur indicate that the Nonesuch Formation was deposited in a marine embayment, in contrast to the prevailing interpretation of a lacustrine origin. Biomarker compounds (organic molecular fossils) in the Nonesuch are derived largely from primitive eukaryotic algae and bacteria with small contributions from prokaryotic algae (Pratt, et al., 1991). Although concentrations of organic carbon are generally less than 1 wt % in the Nonesuch, levels of thermal maturity are modest and the type of organic matter is hydrogen rich, indicating that deeper water facies with restricted input of siliciclastic sediment may have significant petroleum source potential (Hieshima and Pratt, 1992).

Detailed isotopic studies of oxidized and reduced sulfur species in the Monterey Formation have shown that both iron and organic matter can provide reactive sites for trapping of sulfide formed during sulfate reduction (Zaback and Pratt, 1992; Zaback et al., 1993). Most previous studies of ancient sulfur budgets have failed to incorporate data on elemental

Carbon-isotope profile for organic matter from Early through Upper Cretaceous strata in western Venezuela.
sulfur, monosulfides, and organic sulfur compounds (OCS). When large quantities of highly metabolizable organic matter accumulate below the oxic/anoxic boundary, rates of sulfate reduction can outpace rates of sulfate renewal to the pore water system. High concentrations of hydrogen sulfide can develop under these circumstances, leading to black shales containing pyrite and OCS with anomalous enrichment of 34S.

Upcoming projects in this research group are directed toward understanding the distribution of nutrients and primary productivity in the circum-Caribbean region during the Cretaceous. Marine sequences now exposed in Costa Rica, Columbia, Venezuela, and Trinidad record the influences of discharge from major river system and upwelling into a westward-flowing equatorial current. The prolific petroleum provinces of northern South America are sourced by pelagic and hemipelagic mid-Cretaceous shales deposited prior to closure of the Panamanian istmus.

Representative Publications

Vishnu Ranganathan

Hydrogeology and Aqueous Geochemistry, Basin Analysis

Assistant Professor, Geological Sciences; B.S. Bombay; M.S. Cincinnati; Ph.D. Louisiana State, 1988.

Recent research has centered on the dynamics of fluid-, mass-, and heat transport in sedimentary basins over time scales of 10,000 years to 100 Ma and distance scales of kilometers to hundreds of kilometers.

Ranganathan has just begun a project in which he is using a computer model to estimate the rates at which interstitial brines in intracratonic sedimentary basins such as the Illinois Basin are flushed out by recharging groundwaters. The study may help constrain field-scale permeabilities of rocks in such basins. A second project he is working on entails mapping salinity plumes and thermal plumes of groundwaters around salt domes in the Gulf of Mexico Basin, using geophysical well logs and using computer models of groundwater flow, coupled with heat and mass transport, to simulate the behavior of brine plumes under a variety of subsurface P-T-X conditions and permeability distributions. This research has been funded by grants from the National Science Foundation, the American Chemical Society, and by private industry.

Representative Publications

Conodont biostratigraphy and paleontology, including paleoecology, comprise Rexroad's primary interest. He has worked mostly with Mississippian and Silurian faunas and currently is completing a study of conodonts from the Reelsville Limestone (Chesterian). Recent emphasis, however, has turned to Pennsylvanian strata. Goals include a stratigraphic zonation of the Pennsylvanian of the Illinois Basin and interpretation of the depositional environments of the Pennsylvanian carbonates and of black shales associated with the coals. Both long cores and exposed limestone units are being studied. The latter include the Lead Creek, Perth, and Velpen limestone members. He is involved with several others in refining the Mississippian-Pennsylvanian boundary in southern Illinois where the boundary is locally conformable. Most of his work has been in the Midcontinent, but it ranges from Maine to California and England to China and Australia and includes extensive collecting in Europe.

Representative Publications

Edward M. Ripley Petrology of Metallic Ore Deposits, Isotopic Geochemistry
Professor, Geological Sciences; B.S. Illinois State, M.S. Minnesota, Ph.D. Penn State, 1976.

Ripley's research interests include the genesis of metallic ore deposits and the application of stable isotopic geochemistry to petrologic problems. Primary research goals center on the understanding of both igneous and hydrothermal processes that control the concentration of metals in a variety of geologic settings. Techniques employed in his research program include field mapping, transmitted and reflected light microscopy, fluid inclusion microthermometry, major and trace element analyses, stable isotopic measurements, a variety of microbeam analytical techniques, and thermodynamic/kinetic modeling. Examples of research currently in progress include studies of the genesis of copper, nickel and platinum group elements in mafic igneous rocks of the Duluth Complex and hydrothermal beryllium mineralization in rhyolitic volcanic rocks. Specific topics of concern include the relative roles of fractional crystallization and assimilation of country rocks in the formation of immiscible sulfide melt, the origin of hydrothermal fluids involved in the sub-solidus redistribution of platinum, palladium and gold, and both magmatic and meteoric waters in hydrothermal beryllium mineralization. Other work is on the controls of copper sulfide deposition in Permian red beds in Kansas.

Representative Publications
Albert Rudman
Geophysics

Professor; Geological Sciences; B.S., M.A., Ph.D. Indiana, 1963.

Rudman’s research career has centered on computer applications in exploration geophysics. His work in potential fields includes analysis of gravity magnetic field data and heat flow modeling of magmatic processes in Hawaii. In addition, his recent work in seismic methods includes: (1) seismic array analysis of earthquake location errors in the New Madrid seismic zone, (2) inversion of potential field data, (3) time series analysis of travel time anomalies in Soviet Central Asia, (4) development of new codes for calculating synthetic seismograms based on collaborative work with Neil Frazer at Hawaii, and (5) application of neural networks for identification of first-breaks in seismic reflection data.

Representative Publications

Savarese's primary research effort over the last few years has been directed to the interpretation of the paleobiology of an enigmatic group of fossils, the Archaeocyatha. Archaeocythans were the most abundant constituent of the Early Cambrian fauna and were principal reef frame-builders. Despite this, many fundamental paleobiological questions have remained unanswered. By incorporating evidence from functional morphology, comparison with modern analogs, stratigraphic and paleoecological analyses, and cladistic studies, he has corroborated a hypothesis of sponge affinity for archaeocythans and has shown that their skeletons were capable of generating flows needed for suspension feeding. A better understanding of the tempo and mode of the metazoan radiation at the base of the Phanerozoic requires that the temporal and geographic distribution of taxa be well documented. The paleoecology of Early Cambrian bioherms is still relatively unstudied. The Flinders Ranges of South Australia contain well preserved archaeocyathan bioherms and are ideal for such a study. A project to work on these bioherms, funded by the Petroleum Research Fund, commenced with a field expedition in August, 1992. This work should continue for the next two to three years.

Field work in South Australia has resulted in some unexpected discoveries. Lower Cambrian reefs with an unusual biological composition and paleoecology have been described which have broad implications for Phanerozoic reef development, community ecology, and evolution. The framework of these reefs is composed of a diverse assemblage of calcareous sponges (e.g., archaeocyaths and sphinctozoans), calcareous algae and cyanobacteria, and at least two species of coral-like organisms which bear similarities to younger Paleozoic tabulate corals. Complex growth interactions occur suggesting that space was a limiting factor in these reef ecosystems, as it is today on modern coral reefs. In addition, the paleoenvironmental setting for these reefs is unusual. Reef growth occurred on submarine portions of alluvial fans.
adjacent to a rifted mountain range. If the coral-like fossils are indeed tabulates, this occurrence extends the stratigraphic range of tabulate corals back from the early Ordovician.

Functional Morphology and Ecology of Modern Reef and Freshwater Sponges: If archaeocythans were indeed sponges, the functional morphology and ecology of living sponges in modern environments should be instructive. The physiology of fluid flow through demosponges and the effects gross morphology and ontogenetic variability have on those flows are presently being studied in situ on reefs in the Florida Keys and Jamaica and on algal symbiont-bearing sponges from Lake Baikal, Siberia.

Sponges are the most prolific biotic component in Lake Baikal, and consequently they have profound effects on water nutrients, food availability, and, because of the presence of algal sponges, on dissolved oxygen and carbon dioxide. Preliminary data analysis shows that Baikal sponges are capable of pumping water at rates up to 6 cm/s, enabling them to process of volume of fluid equal to their body volume every 15 seconds. They are also extremely efficient at removing bacterial-sized plankton and can discriminate between food types. Metabolism experiments conducted on symbiont-bearing individuals show that sponges are significant primary producers although not as productive as tropical scleractinian corals.

Biomechanics of Benthic Marine Invertebrates: A second aspect of Savarese's research considers the effects morphology of free-lying benthic organisms has on fluid-induced forces and substrate stability, and the effects morphology has on taphonomic processes. Marine life in the Paleozoic was dominated by epifaunal, soft substrate animals. Many of these, namely brachiopods and rugose corals, possessed no means of attachment, and, therefore, were susceptible to disturbance caused by currents. These flow-induced forces are partly a function of organism size, shape, and orientation. Consequently, morphology and behavior may have an adaptive significance to these epifaunal animals. Finally, these forces may operate during the life of an animal or after its death. Taphonomic and functional hypotheses are being tested experimentally in a flume, designed and built in the Department, and in the image analysis laboratory. This facility is designed for the study of boundary layer phenomena and for measurement of forces benthic organisms experience. In addition, field based paleoecologic studies are being conducted to corroborate results from biomechanical experimentation.

Representative Publications

Arndt Schimmelmann

Assistant Scientist, Dept. of Geological Sciences and Dept. of Chemistry; M.S. Univ. Braunschweig (Germany); Ph.D. UCLA, 1985.

Arndt Schimmelmann and coworkers investigate the sedimentary paleoceanographic record of Santa Barbara Basin varves (= annual sedimentary increments; see figure below) to reconstruct periods of abrupt climatic change from a few thousand years BP to the Present. The marine varve record is tied to land-based climatic history for the historic time-period (since the 19th century), whereas older sediment is correlated with long tree-ring records and dated by \(^{14}C\)-radiocarbon methods. Stable isotope ratios and biomarkers in high-resolution sequences of sediment increments are currently used to reconstruct the sea surface temperature and the occurrence of El Niño events for prehistoric time periods.

Another interest is hydrogen isotopic exchange and the hydrogen stable isotope ratio in biopolymers and refractory sedimentary organic matter. The D/H (\(^{2}H/\)H) ratio of carbon-bound, non-exchangeable hydrogen in many organic compounds offers paleoclimatic and paleoenvironmental information. In contrast, hydrogen bound to oxygen and nitrogen may exchange isotopically with ambient water. The influence of exchangeable hydrogen needs to be eliminated for meaningful D/H measurements. In cases where chemical derivatization is impractical, isotopic equilibration was shown to yield good results. Sample size requirements for isotopic equilibration are typically much smaller than for methods involving prior chemical derivatization.

Representative Publications

Roberta H. Shaver
Professor (ret.), Geological Sciences, B.S., M.S., Ph.D., Illinois, 1951.

Shaver's research interests have focused mostly in three areas: in earlier years, especially in Carboniferous biostratigraphy and ostracod paleontology; in later years, in midwestern Siluro-Devonian stratigraphy, Illinois Basin to Michigan Basin, and in Silurian carbonate sedimentation and reef paleoecology of the same area. Some of this work has been applied to the current debates on the relative efficacy of eustasy and tectonism to account for third-order cyclical deposition in Silurian carbonate rocks. Another impact has been toward a revolution of thought on the relationship between evaporite- and reef-bearing Silurian rocks in the Midwest.

Three current projects are:
(a) Sedimentological, paleoecological, and tectono-eustatic events across the Wenlockian-Ludlovian (Silurian) boundary, midwestern craton, U.S.A. This work was requested by the Subcommission on Silurian Stratigraphy of the International Union of Geological Sciences (for IGCP project 216, publication managed by Otto Walliser, Germany). Manuscript submitted 1991.

Representative Publications
Shaver, R.H. (senior author), and 30 others (1985). Midwestern basins and arches region, in Lindberg, F.A., editor, Correlation of Stratigraphic Units of North America (COSUNA) Project: Tulsa, Oklahoma, American Association of Petroleum Geologists COSUNA Chart MBA.
Lee J. Suttner's research centers on field-based studies of Cretaceous fluvial systems in the Rocky Mountain foreland basin of Colorado, Wyoming, and Montana. Traditional models of foreland-basin evolution emphasize the importance of fold-thrust belt tectonics along the basin margin in controlling stratigraphic patterns within the basin. Suttner's work elucidates the role of intra-basin lithosphere deformation, in all probability forced by plate-margin tectonic events, in influencing the location, morphology, and direction of flow of river systems and their associated deposits within the foreland basin. Currently, field work is taking place in the northeast Powder River Basin and around the Flanks of the Black Hills uplift. This area is of special interest because it is one of a rare number of sites where it is possible to study the complex interrelations in a foreland basin between rivers which flowed off the craton and those that originated in the fold-thrust belt. Deciphering age relations among the major river systems is an important part of the study because it is crucial to understanding both the mechanisms and rates of migrations of the systems. These age relations are being established through a combination of magnetostratigraphy, fission track dating and subsurface correlation, the latter made possible with the Department's library of geophysical logs. A number of professionals from other institutions are involved in this study including Gary Johnson at Dartmouth University (paleomagnetic and fission-track stratigraphy), Peter

Arrows represent patterns of Early Cretaceous sediment dispersal in the Rocky Mountain foreland basin. Trunk river systems were confined within graben-like structures caused by intra-basin lithosphere deformation. River system C formed approximately 10 million years after systems A&B, perhaps in response to a later tectonic event in the Sevier fold-thrust belt.
DeCelles at the University of Arizona (Jurassic/Cretaceous fluvial-systems analysis in the Wyoming-Idaho thrust belt), James Meyers at Winona State University (Jurassic Cretaceous non-marine facies analysis in Montana) and Lloyd Furer of the Indiana Geological Survey (regional subsurface correlation). This work is being supported by grants from NSF.

Representative Publications

![Schematic cross-sections illustrating the temporal and spatial association among foreland-basin margin thrusting, erosion, and basin filling.](image-url)
Towell's major research goals and interests lie in the application of geochemical techniques to the solution of petrologic problems. The primary focus of his work is on plutonic and volcanic igneous rocks but also includes metamorphic and sedimentary rocks as well. The principal aspect of his research is the application of major and trace element geochemistry to modeling magmatic differentiation processes (e.g., partial melting, fractional crystallization, magma mixing, etc.) Field mapping and sample collection (right) are combined with extensive chemical (below) and mineralogical analysis including petrography, inductively coupled plasma emission spectroscopy and electron microprobe analysis. Specific investigations have included studies in the Boulder and Tobacco Root batholiths, the North Doherty Intrusive Complex, and the Elkhorn Mountains Volcanic Series, all located in southwest Montana. Attempts are also being made to relate these intrusive and extrusive bodies on a regional basis in terms of both igneous and tectonic history.

Representative Publications
Charles J. Vitaliano

Petrology and Petrography

Professor (ret.), Geological Sciences; B.S., College of the City of New York, M.A., Ph.D. Columbia University, 1944.

Research has focussed mainly on Economic Geology of non metallic minerals; field mapping and petrology of igneous, volcanic and metamorphic rocks. Currently Vitaliano is involved in the study of petrography of archaeological artifacts. Previous and current projects include:

(a) Magnesium-bearing deposits of Nevada, Utah and California.
(b) Low-grade metamorphic rocks of New Zealand.
(c) High-grade Precambrian Metamorphic rocks in Montana, U.S.A.
(d) volcanic rocks of Nevada and Santorini, Greece, and
(e) Petrography of artifacts from Israel, Greece, the Mississippi Valley and the Eastern Mediterranean.

Representative Publications

White and his group are interested in processes controlling the cycling of elements in aquatic and terrestrial systems and in the potential impact of human activity on element cycles. They study cycling of elements at sediment/water interfaces in fresh water systems and within soils of agricultural systems. They also contribute to interdisciplinary research on changes in the biology and chemistry of lake/watershed systems.

Increased deposition of atmospheric sulfate is affecting the cycling of sulfur, iron, manganese, and carbon in lake ecosystems of northeastern North America. They have been investigating these effects by measuring chemical changes over short distances (1 cm) at the sediment/water interface of acidic lakes in the Adirondack Mountain region of New York State. Evidence of changes in element cycling is drawn from chemical diffusion gradients, chemical mass balances, sediment geochemistry, and stable isotopic analyses. White's group have accumulated evidence of profound changes in the importance of sulfate reduction and, thus, the cycling of carbon in remote lakes, and have found that the cycling of trace metals has also been altered.

Additionally, they have begun work on methane cycling in wetlands. Freshwater wetland environments are particularly conducive to methanogenesis because they are often rich in organic matter and depleted in O_2 and sulfate. On a molar basis, each increment of CH$_4$ emitted to the atmosphere is 25-fold more efficient at energy retention than are corresponding additions of CO$_2$. With atmospheric methane concentrations increasing at a rate of 1% per year, the role of methane as a greenhouse gas is of major concern. To improve understanding of natural sources of atmospheric methane, they are currently investigating a number of wetland types. The role of local climate (temperature, insolation, and water level) in controlling methane budgets is being studied using chemical mass balances, stable isotopic analyses, isolation of specific bacterial populations, and continuous records of climatic variables. They aim to develop mechanistic models that will describe methane cycling in detail and which will allow prediction of responses of natural rates of methane production to climatic change.

Other areas of research include: the development of stable isotopes of nitrogen as a "fingerprinting" tool to identify the sources of ammonia and nitrate in surface water; improvement of sampling and analysis techniques for trace metals in gravel sediments; and development of new isolation techniques for microbial communities inhabiting wetland sediments.

Representative Publications

Robert P. Wintsch

Metamorphic, Structural, Sedimentary Petrology, Tectonics, Geochronology

Professor, Geological Sciences; B.A. Beloit; Ph.D. Brown, 1975.

Research of Wintsch and students working with him spans several aspects of metamorphic geology, from diagenesis and low grade metamorphism in slaty rocks to high grade metamorphism and partial melting. Much of this research focuses on identifying the relationships between deformational and metamorphic processes, from the grain scale and pressure solution to the plate scale and orogenesis.

Analysis of Suspect Terranes: Much of our most recent work has dealt with the identification of suspect or exotic lithotectonic terranes in the Appalachians, and with the history of terrane accretion. Our approach is a multidisciplinary one that requires a variety of techniques. It relies on field work, where we try hard to understand the significance of ductile faults, which mark the boundaries of most terranes. However, some ductile faults present within terranes are 'lazy' and have little demonstrable displacement in spite of spectacularly well developed structures and textures. We sample and analyze metamorphic assemblages within terranes to try to identify discontinuities in metamorphic grade. This work is done on the IU campus, but we date minerals by 40Ar/39Ar and U-Pb methods by collaborating with isotope geologists at the USGS, again to identify discontinuities in the time of metamorphism or of cooling from metamorphic conditions. Some of our work is in the southern Appalachians, but we have worked most intensively in southern New England (see Fig. below). This summer (1994) we will begin work in central New England, where we will collaborate with geologists from Massachusetts, New Hampshire and Maine, and again with USGS geochronologists. Thus there is much opportunity for student participation in field, analytical, and in some cases geochronologic work, and we can be flexible about what kinds of problems to approach and where field relations can most effectively be addressed.

Cross section of southeastern New England, showing the distribution of lithotectonic terranes as they may have looked in the Late Paleozoic. The numbers refer to hornblende cooling ages, and the bold dotted lines represent Alleghanian (late Paleozoic) metamorphic overprinting on earlier Acadian (Devonian) metamorphic rocks. This reconstruction is based on many mineral ages, but also relies on extensive field work with suplimentary metamorphic petrology.
Low Grade Rocks and Slaty Cleavage: Wintsch is working on low grade rocks with the goal of identifying the reactions that occur during diagenesis, and determining if these reactions occur in environments closed or open on the scale of a hand specimen. The degree of openness is being inferred through determining whether the progress of these reactions correlates with changes in the bulk composition of the whole rock. A related study is looking at the mudstone to slate transition, to determine if pressure solution of mudstones could release, or "mobilize" major components for recycling in the upper crust. Collaborative work on fission track ages in apatite and zircon helps to inductively reconstruct the loading and unloading history of sedimentary basins.

Mylonites and Fault Rocks: Wintsch is exploring the relationships among chemical and mechanical processes in metamorphism, and especially in fault zones, where mechanical processes are relatively important. Chemical processes turn out to have a relatively large role in the evolution of fault rocks, from pressure solution-like dissolution/precipitation reactions in a near closed system, to reaction softening and reaction hardening in relatively open systems. He has identified ductile processes in very shallow fault zones where brittle deformation is expected, and evidence for brittle (seismic?) deformation is rocks as high grade as the sillimanite zone, where ductile deformation is expected. Wintsch has been working on fault rocks from the Moine thrust, Scotland, Insubric line southern Swiss Alps, and the northern and central Appalachians.

Representative Publications

* Graduate Student; ** Undergraduate Student